8,363 research outputs found

    Epitaxial LaFeAsOF thin films grown by pulsed laser deposition

    Full text link
    Superconducting and epitaxially grown LaFeAsOF thin films were successfully prepared on (001)-oriented LaAlO3 substrates using pulsed laser deposition. The prepared thin films show exclusively a single in-plane orientation with epitaxial relation (001)[100] parallel to (001)[100] and a FWHM value of 1deg. Furthermore, resistive measurement of the superconducting transition temperature revealed a Tc90 of 25K with a high residual resistive ratio of 6.8. The applied preparation technique, standard thin film pulsed laser deposition at room temperature in combination with a subsequent post annealing process, is suitable for fabrication of high quality LaFeAsO1-xFx thin films. A high upper critical field of 76.2 T was evaluated for magnetic fields applied perpendicular to the c-axis and the anisotropy was calculated to be 3.3 assuming single band superconductivity.Comment: 6 pages, 4 Figure

    Nonlinear Integral Equations for Thermodynamics of the U_{q}(\hat{sl(r+1)}) Perk-Schultz Model

    Full text link
    We propose a system of nonlinear integral equations (NLIE) which describes the thermodynamics of the U_{q}(\hat{sl(r+1)}) Perk-Schultz model. These NLIE correspond to a trigonometric analogue of our previous result (cond-mat/0212280), and contain only r unknown functions. In particular, they reduce to Takahashi's NLIE for the XXZ spin chain (cond-mat/0010486) if r=1. We also calculate the high temperature expansion of the free energy. In particular for r=1 case, we have succeeded to derive the coefficients of order O((\frac{J}{T})^{99}).Comment: 19 pages, 4 figures, only the Mathematica file for the high temperature expansion is replaced, to appear in J.Phys.Soc.Jpn.Vol.74 No.3 (2005

    Integrabilities of the tJt-J Model with Impurities

    Full text link
    The hamiltonian with magnetic impurities coupled to the strongly correlated electron system is constructed from tJt-J model. And it is diagonalized exactly by using the Bethe ansatz method. Our boundary matrices depend on the spins of the electrons. The Kondo problem in this system is discussed in details. The integral equations are derived with complex rapidities which describe the bound states in the system. The finite-size corrections for the ground-state energies are obtained.Comment: 24 pages, Revtex, To be published in J. Phys.

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    GTI-space : the space of generalized topological indices

    Get PDF
    A new extension of the generalized topological indices (GTI) approach is carried out torepresent 'simple' and 'composite' topological indices (TIs) in an unified way. Thisapproach defines a GTI-space from which both simple and composite TIs represent particular subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary and Randićconnectivity indices are expressed by means of the same GTI representation introduced for composite TIs such as hyper-Wiener, molecular topological index (MTI), Gutman index andreverse MTI. Using GTI-space approach we easily identify mathematical relations between some composite and simple indices, such as the relationship between hyper-Wiener and Wiener index and the relation between MTI and first Zagreb index. The relation of the GTI space with the sub-structural cluster expansion of property/activity is also analysed and some routes for the applications of this approach to QSPR/QSAR are also given

    Estimations of electron-positron pair production at high-intensity laser interaction with high-Z targets

    Get PDF
    Electron-positron pairs' generation occuring in the interaction of 101810^{18}-102010^{20}~W/cm2^2 laser radiation with high-Z targets are examined. Computational results are presented for the pair production and the positron yield from the target with allowance for the contribution of pair production processes due to electrons and bremsstrahlung photons. Monte-Carlo simulations using the PRIZMA code confirm the estimates obtained. The possible positron yield from high-Z targets irradiated by picosecond lasers of power 10210^2-10310^3~TW is estimated to be 10910^9-101110^{11}

    Neutrinos in Non-linear Structure Formation - a Simple SPH Approach

    Full text link
    We present a novel method for implementing massive neutrinos in N-body simulations. Instead of sampling the neutrino velocity distribution by individual point particles we take neutrino free-streaming into account by treating it as an effective redshift dependent sound speed in a perfect isothermal fluid, and assume a relation between the sound speed and velocity dispersion of the neutrinos. Although the method fails to accurately model the true neutrino power spectrum, it is able to calculate the total matter power spectrum to the same accuracy as more complex hybrid neutrino methods, except on very small scales. We also present an easy way to update the publicly available Gadget-2 version with this neutrino approximation.Comment: 13 pages, 7 figure

    The PDZ domain of the SpoIVB serine peptidase facilitates multiple functions

    Get PDF
    During spore formation in Bacillus subtilis, the SpoIVB protein is a critical component of the sigma (K) regulatory checkpoint. SpoIVB has been shown to be a serine peptidase that is synthesized in the spore chamber and which self-cleaves, releasing active forms. These forms can signal proteolytic processing of the transcription factor sigma (K) in the outer mother cell chamber of the sporulating cell. This forms the basis of the sigma (K) checkpoint and ensures accurate sigma (K)-controlled gene expression. SpoIVB has also been shown to activate a second distinct process, termed the second function, which is essential for the formation of heat-resistant spores. In addition to the serine peptidase domain, SpoIVB contains a PDZ domain. We have altered a number of conserved residues in the PDZ domain by site-directed mutagenesis and assayed the sporulation phenotype and signaling properties of mutant SpoIVB proteins. Our work has revealed that the SpoIVB PDZ domain could be used for up to four distinct processes, (i) targeting of itself for trans proteolysis, (11) binding to the protease inhibitor BofC, (iii) signaling of pro-sigma (K) processing, and (iv) signaling of the second function of SpoIVB

    Fuzzy Fibers: Uncertainty in dMRI Tractography

    Full text link
    Fiber tracking based on diffusion weighted Magnetic Resonance Imaging (dMRI) allows for noninvasive reconstruction of fiber bundles in the human brain. In this chapter, we discuss sources of error and uncertainty in this technique, and review strategies that afford a more reliable interpretation of the results. This includes methods for computing and rendering probabilistic tractograms, which estimate precision in the face of measurement noise and artifacts. However, we also address aspects that have received less attention so far, such as model selection, partial voluming, and the impact of parameters, both in preprocessing and in fiber tracking itself. We conclude by giving impulses for future research

    Drinfeld Twists and Symmetric Bethe Vectors of Supersymmetric Fermion Models

    Full text link
    We construct the Drinfeld twists (factorizing FF-matrices) of the gl(mn)gl(m|n)-invariant fermion model. Completely symmetric representation of the pseudo-particle creation operators of the model are obtained in the basis provided by the FF-matrix (the FF-basis). We resolve the hierarchy of the nested Bethe vectors in the FF-basis for the gl(mn)gl(m|n) supersymmetric model.Comment: Latex File, 24 pages, no figure, some misprints are correcte
    corecore