842 research outputs found

    Lateral-Mode Vibration of Microcantilever-Based Sensors in Viscous Fluids Using Timoshenko Beam Theory

    Get PDF
    To more accurately model microcantilever resonant behavior in liquids and to improve lateral-mode sensor performance, a new model is developed to incorporate viscous fluid effects and Timoshenko beam effects (shear deformation, rotatory inertia). The model is motivated by studies showing that the most promising geometries for lateral-mode sensing are those for which Timoshenko effects are most pronounced. Analytical solutions for beam response due to harmonic tip force and electrothermal loadings are expressed in terms of total and bending displacements, which correspond to laser and piezoresistive readouts, respectively. The influence of shear deformation, rotatory inertia, fluid properties, and actuation/detection schemes on resonant frequencies ( ) and quality factors ( ) are examined, showing that Timoshenko beam effects may reduce and by up to 40% and 23%, respectively, but are negligible for width-to-length ratios of 1/10 and lower. Comparisons with measurements (in water) indicate that the model predicts the qualitative data trends, but underestimates the softening that occurs in stiffer specimens, indicating that support deformation becomes a factor. For thinner specimens, the model estimates quite well, but exceeds the observed values for thicker specimens, showing that the Stokes resistance model employed should be extended to include pressure effects for these geometries.[2014-0157

    Timoshenko Beam Model for Lateral Vibration of Liquid-Phase Microcantilever-Based Sensors

    Get PDF
    Dynamic-mode microcantilever-based devices are potentially well suited to biological and chemical sensing applications. However, when these applications involve liquid-phase detection, fluid-induced dissipative forces can significantly impair device performance. Recent experimental and analytical research has shown that higher in-fluid quality factors (Q) are achieved by exciting microcantilevers in the lateral flexural mode. However, experimental results show that, for microcantilevers having larger width-to-length ratios, the behaviors predicted by current analytical models differ from measurements. To more accurately model microcantilever resonant behavior in viscous fluids and to improve understanding of lateral-mode sensor performance, a new analytical model is developed, incorporating both viscous fluid effects and “Timoshenko beam” effects (shear deformation and rotatory inertia). Beam response is examined for two harmonic load types that simulate current actuation methods: tip force and support rotation. Results are expressed in terms of total beam displacement and beam displacement due solely to bending deformation, which correspond to current detection methods used with microcantilever-based devices (optical and piezoresistive detection, respectively). The influences of the shear, rotatory inertia, and fluid parameters, as well as the load/detection scheme, are investigated. Results indicate that load/detection type can impact the measured resonant characteristics and, thus, sensor performance, especially at larger values of fluid resistance

    Timoshenko Beam Effects in Lateral-mode Microcantilever-based Sensors in Liquids

    Get PDF
    Recent experimental and analytical research has shown that higher in-fluid quality factors (Q) are achieved by actuating microcantilevers in the lateral flexural mode, especially for microcantilevers having larger width-to-length ratios. However, experimental results show that for these geometries the resonant characteristics predicted by the existing analytical models differ from the measurements. A recently developed analytical model to more accurately predict the resonant behaviour of these devices in viscous fluids is described. The model incorporates viscous fluid effects via a Stokes-type fluid resistance assumption and `Timoshenko beam\u27 effects (shear deformation and rotatory inertia). Unlike predictions based on Euler-Bernoulli beam theory, the new theoretical results for both resonant frequency and Q exhibit the same trends as seen in the experimental data for in-water measurements as the beam slenderness decreases. An analytical formula for Q is also presented to explicitly illustrate how Q depends on beam geometry and on beam and fluid properties. Beam thickness effects are also examined and indicate that the analytical results yields good numerical estimates of Q for the thinner (5 μm) specimens tested, but overestimate Q for the thicker (20 μm) specimens, thus suggesting that a more accurate fluid resistance model should be introduced in the future for the latter case

    Electronic color charts for dielectric films on silicon

    Get PDF
    This paper presents the calculation of the perceived color of dielectric films on silicon. A procedure is shown for computing the perceived color for an arbitrary light source, light incident angle, and film thickness. The calculated color is converted into RGB parameters that can be displayed on a color monitor, resulting in the generation of electronic color charts for dielectric films. This paper shows generated electronic color charts for both silicon dioxide and silicon nitride films on silicon

    Electronic color charts for dielectric films on silicon

    Get PDF
    This paper presents the calculation of the perceived color of dielectric films on silicon. A procedure is shown for computing the perceived color for an arbitrary light source, light incident angle, and film thickness. The calculated color is converted into RGB parameters that can be displayed on a color monitor, resulting in the generation of electronic color charts for dielectric films. This paper shows generated electronic color charts for both silicon dioxide and silicon nitride films on silicon

    Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes.

    Get PDF
    Low-dose antithymocyte globulin (ATG) plus pegylated granulocyte colony-stimulating factor (G-CSF) preserves β-cell function for at least 12 months in type 1 diabetes. Herein, we describe metabolic and immunological parameters 24 months following treatment. Patients with established type 1 diabetes (duration 4-24 months) were randomized to ATG and pegylated G-CSF (ATG+G-CSF) (N = 17) or placebo (N = 8). Primary outcomes included C-peptide area under the curve (AUC) following a mixed-meal tolerance test (MMTT) and flow cytometry. "Responders" (12-month C-peptide ≥ baseline), "super responders" (24-month C-peptide ≥ baseline), and "nonresponders" (12-month C-peptide < baseline) were evaluated for biomarkers of outcome. At 24 months, MMTT-stimulated AUC C-peptide was not significantly different in ATG+G-CSF (0.49 nmol/L/min) versus placebo (0.29 nmol/L/min). Subjects treated with ATG+G-CSF demonstrated reduced CD4+ T cells and CD4+/CD8+ T-cell ratio and increased CD16+CD56hi natural killer cells (NK), CD4+ effector memory T cells (Tem), CD4+PD-1+ central memory T cells (Tcm), Tcm PD-1 expression, and neutrophils. FOXP3+Helios+ regulatory T cells (Treg) were elevated in ATG+G-CSF subjects at 6, 12, and 18 but not 24 months. Immunophenotyping identified differential HLA-DR expression on monocytes and NK and altered CXCR3 and PD-1 expression on T-cell subsets. As such, a group of metabolic and immunological responders was identified. A phase II study of ATG+G-CSF in patients with new-onset type 1 diabetes is ongoing and may support ATG+G-CSF as a prevention strategy in high-risk subjects
    corecore