217 research outputs found

    Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)

    Get PDF
    Abstract. There is a temporal correlation between the peak activity of the North Atlantic Igneous Province (NAIP) and the Paleocene–Eocene Thermal Maximum (PETM), suggesting that the NAIP may have initiated and/or prolonged this extreme warming event. However, corroborating a causal relationship is hampered by a scarcity of expanded sedimentary records that contain both climatic and volcanic proxies. One locality hosting such a record is the island of Fur in Denmark, where an expanded pre- to post-PETM succession containing hundreds of NAIP ash layers is exceptionally well preserved. We compiled a range of environmental proxies, including mercury (Hg) anomalies, paleotemperature proxies, and lithium (Li) and osmium (Os) isotopes, to trace NAIP activity, hydrological changes, weathering, and seawater connectivity across this interval. Volcanic proxies suggest that NAIP activity was elevated before the PETM and appears to have peaked during the body of the δ13C excursion but decreased considerably during the PETM recovery. This suggests that the acme in NAIP activity, dominated by flood basalt volcanism and thermogenic degassing from contact metamorphism, was likely confined to just ∼ 200 kyr (ca. 56.0–55.8 Ma). The hundreds of thick (> 1 cm) basaltic ashes in the post-PETM strata likely represent a change from effusive to explosive activity, rather than an increase in NAIP activity. Detrital δ7Li values and clay abundances suggest that volcanic ash production increased the basaltic reactive surface area, likely enhancing silicate weathering and atmospheric carbon sequestration in the early Eocene. Signals in lipid biomarkers and Os isotopes, traditionally used to trace paleotemperature and weathering changes, are used here to track seaway connectivity. These proxies indicate that the North Sea was rapidly cut off from the North Atlantic in under 12 kyr during the PETM recovery due to NAIP thermal uplift. Our findings reinforce the hypothesis that the emplacement of the NAIP had a profound and complex impact on Paleocene–Eocene climate, both directly through volcanic and thermogenic degassing and indirectly by driving regional uplift and changing seaway connectivity

    Worksite health screening programs for predicting the development of Metabolic Syndrome in middle-aged employees: a five-year follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) management programs conventionally focus on the adults having MetS. However, risk assessment for MetS development is also important for many adults potentially at risk but do not yet fulfill MetS criteria at screening. Therefore, we conducted this follow-up study to explore whether initial screening records can be efficiently applied on the prediction of the MetS occurrence in healthy middle-aged employees.</p> <p>Methods</p> <p>Utilizing health examination data, a five-year follow-up observational study was conducted for 1384 middle-aged Taiwanese employees not fulfilling MetS criteria. Data analyzed included: gender, age, MetS components, uric acid, insulin, liver enzymes, sonographic fatty liver, hepatovirus infections and lifestyle factors. Multivariate logistic regression was used to estimate the adjusted odds ratios (OR) and 95% confidence interval (CI) of risk for MetS development. The synergistic index (SI) values and their confidence intervals of risk factor combinations were calculated; and were used to estimate the interacting effects of coupling MetS components on MetS development.</p> <p>Results</p> <p>Within five years, 13% (175 out of 1384) participants fulfilled MetS criteria. The ORs for MetS development among adults initially having one or two MetS components were 2.8 and 7.3, respectively (both p < 0.01), versus the adults having zero MetS component count at screening. Central obesity carried an OR of 7.5 (p < 0.01), which far exceeded other risk factors (all ORs < 2.7). Synergistic effects on MetS development existed between coupling MetS components: 1. High blood pressure plus low-HDL demonstrated an OR of 11.7 (p < 0.01) for MetS development and an SI of 4.7 (95% CI, 2.1-10.9). 2. High blood pressure plus hyperglycemia had an OR of 7.9 (p < 0.01), and an SI of 2.7 (95% CI, 1.2-6.4).</p> <p>Conclusion</p> <p>MetS component count and combination can be used in predicting MetS development for participants potentially at risk. Worksite MetS screening programs simultaneously allow for finding out cases and for assessing risk of MetS development.</p

    Wdr18 Is Required for Kupffer's Vesicle Formation and Regulation of Body Asymmetry in Zebrafish

    Get PDF
    Correct specification of the left-right (L-R) axis is important for organ morphogenesis. Conserved mechanisms involving cilia rotation inside node-like structures and asymmetric Nodal signaling in the lateral plate mesoderm (LPM), which are important symmetry-breaking events, have been intensively studied. In zebrafish, the clustering and migration of dorsal forerunner cells (DFCs) is critical for the formation of the Kuppfer's vesicle (KV). However, molecular events underlying DFC clustering and migration are less understood. The WD-repeat proteins function in a variety of biological processes, including cytoskeleton assembly, intracellular trafficking, mRNA splicing, transcriptional regulation and cell migration. However, little is known about the function of WD-repeat proteins in L-R asymmetry determination. Here, we report the identification and functional analyses of zebrafish wdr18, a novel gene that encodes a WD-repeat protein that is highly conserved among vertebrate species. wdr18 was identified from a Tol2 transposon-mediated enhancer trap screen. Follow-up analysis of wdr18 mRNA expression showed that it was detected in DFCs or the KV progenitor cells and later in the KV at early somitogenesis stages. Morpholino knockdown of wdr18 resulted in laterality defects in the visceral organs, which were preceded by the mis-expression of Nodal-related genes, including spaw and pitx2. Examination of morphants at earlier stages revealed that the KV had fewer and shorter cilia which are immotile and a smaller cavity. We further investigated the organization of DFCs in wdr18 morphant embryos using ntl and sox17 as specific markers and found that the clustering and migration of DFC was altered, leading to a disorganized KV. Finally, through a combination of wdr18 and itgb1b morpholino injections, we provided evidence that wdr18 and itgb1b genetically interact in the laterality determination process. Thus, we reveal a new and essential role for WD-repeat proteins in the determination and regulation of L-R asymmetry and propose a potential mechanism for wdr18 in the regulation of DFC clustering and migration and KV formation

    ggstThe role of tendon microcirculation in Achilles and patellar tendinopathy

    Get PDF
    Tendinopathy is of distinct interest as it describes a painful tendon disease with local tenderness, swelling and pain associated with sonographic features such as hypoechogenic texture and diameter enlargement. Recent research elucidated microcirculatory changes in tendinopathy using laser Doppler flowmetry and spectrophotometry such as at the Achilles tendon, the patellar tendon as well as at the elbow and the wrist level. Tendon capillary blood flow is increased at the point of pain. Tendon oxygen saturation as well as tendon postcapillary venous filling pressures, determined non-invasively using combined Laser Doppler flowmetry and spectrophotometry, can quantify, in real-time, how tendon microcirculation changes over with pathology or in response to a given therapy. Tendon oxygen saturation can be increased by repetitive, intermittent short-term ice applications in Achilles tendons; this corresponds to 'ischemic preconditioning', a method used to train tissue to sustain ischemic damage. On the other hand, decreasing tendon oxygenation may reflect local acidosis and deteriorating tendon metabolism. Painful eccentric training, a common therapy for Achilles, patellar, supraspinatus and wrist tendinopathy decreases abnormal capillary tendon flow without compromising local tendon oxygenation. Combining an Achilles pneumatic wrap with eccentric training changes tendon microcirculation in a different way than does eccentric training alone; both approaches reduce pain in Achilles tendinopathy. The microcirculatory effects of measures such as extracorporeal shock wave therapy as well as topical nitroglycerine application are to be studied in tendinopathy as well as the critical question of dosage and maintenance. Interestingly it seems that injection therapy using color Doppler for targeting the area of neovascularisation yields to good clinical results with polidocanol sclerosing therapy, but also with a combination of epinephrine and lidocaine

    Photosynthetic Responses to Heat Treatments at Different Temperatures and following Recovery in Grapevine (Vitis amurensis L.) Leaves

    Get PDF
    BACKGROUND: The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. METHODOLOGY/FINDINGS: The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. CONCLUSIONS: Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress

    Identification of Sare0718 As an Alanine-Activating Adenylation Domain in Marine Actinomycete Salinispora arenicola CNS-205

    Get PDF
    BACKGROUND: Amino acid adenylation domains (A domains) are critical enzymes that dictate the identity of the amino acid building blocks to be incorporated during nonribosomal peptide (NRP) biosynthesis. NRPs represent a large group of valuable natural products that are widely applied in medicine, agriculture, and biochemical research. Salinispora arenicola CNS-205 is a representative strain of the first discovered obligate marine actinomycete genus, whose genome harbors a large number of cryptic secondary metabolite gene clusters. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate cryptic NRP-related metabolites in S. arenicola CNS-205, we cloned and identified the putative gene sare0718 annotated "amino acid adenylation domain". Firstly, the general features and possible functions of sare0718 were predicted by bioinformatics analysis, which suggested that Sare0718 is a soluble protein with an AMP-binding domain contained in the sequence and its cognate substrate is L-Val. Then, a GST-tagged fusion protein was expressed and purified to further explore the exact adenylation activity of Sare0718 in vitro. By a newly mentioned nonradioactive malachite green colorimetric assay, we found that L-Ala but not L-Val is the actual activated amino acid substrate and the basic kinetic parameters of Sare0718 for it are K(m) = 0.1164±0.0159 (mM), V(max) = 3.1484±0.1278 (µM/min), k(cat) = 12.5936±0.5112 (min(-1)). CONCLUSIONS/SIGNIFICANCE: By revealing the biochemical role of sare0718 gene, we identified an alanine-activating adenylation domain in marine actinomycete Salinispora arenicola CNS-205, which would provide useful information for next isolation and function elucidation of the whole cryptic nonribosomal peptide synthetase (NRPS)-related gene cluster covering Sare0718. And meanwhile, this work also enriched the biochemical data of A domain substrate specificity in newly discovered marine actinomycete NRPS system, which bioinformatics prediction will largely depend on

    Microsatellite Support for Active Inbreeding in a Cichlid Fish

    Get PDF
    In wild animal populations, the degree of inbreeding differs between species and within species between populations. Because mating with kin often results in inbreeding depression, observed inbreeding is usually regarded to be caused by limited outbreeding opportunities due to demographic factors like small population size or population substructuring. However, theory predicts inclusive benefits from mating with kin, and thus part of the observed variation in inbreeding might be due to active inbreeding preferences. Although some recent studies indeed report kin mating preferences, the evidence is still highly ambiguous. Here, we investigate inbreeding in a natural population of the West African cichlid fish Pelvicachromis taeniatus which showed clear kin mating preferences in standardized laboratory experiments but no inbreeding depression. The presented microsatellite analysis reveals that the natural population has, in comparison to two reference populations, a reduced allelic diversity (A = 3) resulting in a low heterozygosity (Ho = 0.167) pointing to a highly inbred population. Furthermore, we found a significant heterozygote deficit not only at population (Fis = 0.116) but also at subpopulation level (Fis = 0.081) suggesting that inbreeding is not only a by-product of population substructuring but possibly a consequence of behavioral kin preferences

    The immunobiology of primary sclerosing cholangitis

    Get PDF
    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease histologically characterized by the presence of intrahepatic and/or extrahepatic biliary duct concentric, obliterative fibrosis, eventually leading to cirrhosis. Approximately 75% of patients with PSC have inflammatory bowel disease. The male predominance of PSC, the lack of a defined, pathogenic autoantigen, and the potential role of the innate immune system suggest that it may be due to dysregulation of immunity rather than a classic autoimmune disease. However, PSC is associated with several classic autoimmune diseases, and the strongest genetic link to PSC identified to date is with the human leukocyte antigen DRB01*03 haplotype. The precise immunopathogenesis of PSC is largely unknown but likely involves activation of the innate immune system by bacterial components delivered to the liver via the portal vein. Induction of adhesion molecules and chemokines leads to the recruitment of intestinal lymphocytes. Bile duct injury results from the sustained inflammation and production of inflammatory cytokines. Biliary strictures may cause further damage as a result of bile stasis and recurrent secondary bacterial cholangitis. Currently, there is no effective therapy for PSC and developing a rational therapeutic strategy demands a better understanding of the disease
    corecore