279 research outputs found

    Effects of Preventative Ankle Taping on Planned Change-of-Direction and Reactive Agility Performance and Ankle Muscle Activity in Basketballers

    Get PDF
    This study investigated the effects of preventative ankle taping on planned change-of-direction and reactive agility performance and peak ankle muscle activity in basketballers. Twenty male basketballers (age = 22.30 ± 3.97 years; height = 1.84 ± 0.09 meters; body mass = 85.96 ± 11.88 kilograms) with no ankle pathologies attended two testing sessions. Within each session, subjects completed six planned and six reactive randomized trials (three to the left and three to the right for each condition) of the Y-shaped agility test, which was recorded by timing lights. In one session, subjects had both ankles un-taped. In the other, both ankles were taped using a modified subtalar sling. Peak tibialis anterior, peroneus longus (PL), peroneus brevis (PB), and soleus muscle activity was recorded for both the inside and outside legs across stance phase during the directional change, which was normalized against 10-meter sprint muscle activity (nEMG). Both the inside and outside cut legs during the change-of-direction step were investigated. Repeated measures ANOVA determined performance time and nEMG differences between un-taped and taped conditions. There were no differences in planned change-of-direction or reactive agility times between the conditions. Inside cut leg PL nEMG decreased when taped for the planned left, reactive left, and reactive right cuts (p = 0.01). Outside leg PB and soleus nEMG increased during the taped planned left cut (p = 0.02). There were no other nEMG changes during the cuts with taping. Taping did not affect change-of-direction or agility performance. Inside leg PL activity was decreased, possibly due to the tape following the line of muscle action. This may reduce the kinetic demand for the PL during cuts. In conclusion, ankle taping did not significantly affect planned change-of-direction or reactive agility performance, and did not demonstrate large changes in activity of the muscle complex in healthy basketballers

    Certain Actions from the Functional Movement Screen Do Not Provide an Indication of Dynamic Stability

    Get PDF
    Dynamic stability is an essential physical component for team sport athletes. Certain Functional Movement Screen (FMS) exercises (deep squat; left- and right-leg hurdle step; left- and right-leg in-line lunge [ILL]; left- and right-leg active straight-leg raise; and trunk stability push-up [TSPU]) have been suggested as providing an indication of dynamic stability. No research has investigated relationships between these screens and an established test of dynamic stability such as the modified Star Excursion Balance Test (mSEBT), which measures lower-limb reach distance in posteromedial, medial, and anteromedial directions, in team sport athletes. Forty-one male and female team sport athletes completed the screens and the mSEBT. Participants were split into high-, intermediate-, and low-performing groups according to the mean of the excursions when both the left and right legs were used for the mSEBT stance. Any between-group differences in the screens and mSEBT were determined via a one-way analysis of variance with Bonferroni post hoc adjustment (p \u3c 0.05). Data was pooled for a correlation analysis (p \u3c 0.05). There were no between-group differences in any of the screens, and only two positive correlations between the screens and the mSEBT (TSPU and right stance leg posteromedial excursion, r = 0.37; left-leg ILL and left stance leg posteromedial excursion, r = 0.46). The mSEBT clearly indicated participants with different dynamic stability capabilities. In contrast to the mSEBT, the selected FMS exercises investigated in this study have a limited capacity to identify dynamic stability in team sport athletes

    Comparison of risk scoring systems for patients presenting with upper gastrointestinal bleeding: international multicentre prospective study

    Get PDF
    Objective: To compare the predictive accuracy and clinical utility of five risk scoring systems in the assessment of patients with upper gastrointestinal bleeding. Design: International multicentre prospective study. Setting: Six large hospitals in Europe, North America, Asia, and Oceania. Participants: 3012 consecutive patients presenting over 12 months with upper gastrointestinal bleeding. Main outcome measures: Comparison of pre-endoscopy scores (admission Rockall, AIMS65, and Glasgow Blatchford) and post-endoscopy scores (full Rockall and PNED) for their ability to predict predefined clinical endpoints: a composite endpoint (transfusion, endoscopic treatment, interventional radiology, surgery, or 30 day mortality), endoscopic treatment, 30 day mortality, rebleeding, and length of hospital stay. Optimum score thresholds to identify low risk and high risk patients were determined. Results: The Glasgow Blatchford score was best (area under the receiver operating characteristic curve (AUROC) 0.86) at predicting intervention or death compared with the full Rockall score (0.70), PNED score (0.69), admission Rockall score (0.66, and AIMS65 score (0.68) (all P<0.001). A Glasgow Blatchford score of ≤1 was the optimum threshold to predict survival without intervention (sensitivity 98.6%, specificity 34.6%). The Glasgow Blatchford score was better at predicting endoscopic treatment (AUROC 0.75) than the AIMS65 (0.62) and admission Rockall scores (0.61) (both P<0.001). A Glasgow Blatchford score of ≥7 was the optimum threshold to predict endoscopic treatment (sensitivity 80%, specificity 57%). The PNED (AUROC 0.77) and AIMS65 scores (0.77) were best at predicting mortality, with both superior to admission Rockall score (0.72) and Glasgow Blatchford score (0.64; P<0.001). Score thresholds of ≥4 for PNED, ≥2 for AIMS65, ≥4 for admission Rockall, and ≥5 for full Rockall were optimal at predicting death, with sensitivities of 65.8-78.6% and specificities of 65.0-65.3%. No score was helpful at predicting rebleeding or length of stay. Conclusions: The Glasgow Blatchford score has high accuracy at predicting need for hospital based intervention or death. Scores of ≤1 appear the optimum threshold for directing patients to outpatient management. AUROCs of scores for the other endpoints are less than 0.80, therefore their clinical utility for these outcomes seems to be limited. Trial registration: Current Controlled Trials ISRCTN16235737

    Neural Correlates of Appetite and Hunger-Related Evaluative Judgments

    Get PDF
    How much we desire a meal depends on both the constituent foods and how hungry we are, though not every meal becomes more desirable with increasing hunger. The brain therefore needs to be able to integrate hunger and meal properties to compute the correct incentive value of a meal. The present study investigated the functional role of the amygdala and the orbitofrontal cortex in mediating hunger and dish attractiveness. Furthermore, it explored neural responses to dish descriptions particularly susceptible to value-increase following fasting. We instructed participants to rate how much they wanted food menu items while they were either hungry or sated, and compared the rating differences in these states. Our results point to the representation of food value in the amygdala, and to an integration of attractiveness with hunger level in the orbitofrontal cortex. Dishes particularly desirable during hunger activated the thalamus and the insula. Our results specify the functions of evaluative structures in the context of food attractiveness, and point to a complex neural representation of dish qualities which contribute to state-dependent value

    Communications Biophysics

    Get PDF
    Contains research objectives and summary of research on five research projects, with ten sub-topics.National Institutes of Health (Grant 1 RO1 NS10916-01)National Institutes of Health (Grant 5 RO1 NS11000-03)National Institutes of Health (Grant 1 RO1 NS11153-01)Harvard-M.I.T. Rehabilitation Engineering CenterU. S. Department of Health, Education, and Welfare (Grant 23-P-55854)National Institutes of Health (Grant 1 RO1 NS11680-01)National Institutes of Health (Grant 5 ROI NS11080-02)M.I.T. Health Sciences FundNational Aeronautics and Space Administration (Grant NSG-2032)National Institutes of Health (Grant 5 TO1 GM01555-09)Massachusetts General Hospital Purchase Order F63853Boston City Hospital Purchase Order 4338-7543

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore