6 research outputs found

    Current and future opportunities for satellite remote sensing to inform rewilding

    Get PDF
    Rewilding has been suggested as an effective strategy for addressing environmental challenges such as the intertwined biodiversity and climate change crises, but there is little information to guide the monitoring of rewilding projects. Since rewilding focuses on enhancing ecosystem functionality, with no defined endpoint, monitoring strategies used in restoration are often inappropriate, as they typically focus on assessing species composition, or the ecological transition of an ecosystem towards a defined desired state. We here discuss how satellite remote sensing can provide an opportunity to address existing knowledge and data gaps in rewilding science. We first discuss how satellite remote sensing is currently being used to inform rewilding initiatives and highlight current barriers to the adoption of this type of technology by practitioners and scientists involved with rewilding. We then identify opportunities for satellite remote sensing to help address current knowledge gaps in rewilding, including gaining a better understanding of the role of animals in ecosystem functioning; improving the monitoring of landscape-scale connectivity; and assessing the impacts of rewilding on the conservation status of rewilded sites. Though significant barriers remain to the widespread use of satellite remote sensing to monitor rewilding projects, we argue that decisions on monitoring approaches and priorities need to be part of implementation plans from the start, involving both remote sensing experts and ecologists. Making use of the full potential of satellite remote sensing for rewilding ultimately requires integrating species and ecosystem perspectives at the monitoring, knowledge-producing and decision-making levels. Such an integration will require a change in know-how, necessitating increased inter-disciplinary interactions and collaborations, as well as conceptual shifts in communities and organizations traditionally involved in biodiversity conservation

    Better together: Integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science

    Get PDF
    1. The availability and accessibility of multispectral and radar satellite remote sensing (SRS) imagery are at an unprecedented high. These data have both become standard source of information for investigating species ecology and ecosystems structure, composition and function at large scales. Since they capture complementary aspects of the Earth's surface, synergies between these two types of imagery have the potential to greatly expand research and monitoring opportunities. However, despite the benefits of combining multispectral and radar SRS data, data fusion techniques, including image fusion, are not commonly used in biodiversity monitoring, ecology and conservation. / 2. To help close this application gap, we provide for the first time an overview of the most common SRS data fusion techniques, discussing their benefits and drawbacks, and pull together case studies illustrating the added value for biodiversity research and monitoring. / 3. Integrating and fusing multispectral and radar images can significantly improve our ability to assess the distribution as well as the horizontal and vertical structure of ecosystems. Additionally, SRS data fusion has the potential to increase opportunities for mapping species distribution and community composition, as well as for monitoring threats to biodiversity. Uptake of these techniques will benefit from more effective collaboration between remote sensing and biodiversity experts, making the reporting of methodologies more transparent, expanding SRS image processing capacity and promoting widespread open access to satellite imagery. / 4. In the context of a global biodiversity crisis, being able to track subtle changes in the biosphere across adequate spatial and temporal extents and resolutions is crucial. By making key parameter estimates derived from SRS data more accurate, SRS data fusion promises to become a powerful tool to help address current monitoring needs, and could support the development of essential biodiversity variables

    The policy consequences of defining rewilding

    Get PDF
    More than 30 years after it was first proposed as a biodiversity conservation strategy, rewilding remains a controversial concept. There is currently little agreement about what the goals of rewilding are, and how these are best achieved, limiting the utility of rewilding in mainstream conservation. Achieving consensus about rewilding requires agreeing about what “wild” means, but many different definitions exist, reflecting the diversity of values in conservation. There are three key debates that must be addressed to find a consensual definition of “wild”: (1) to which extent can people and “wild” nature co-exist?; (2) how much space does “wild” nature need? and (3) what kinds of “wild” nature do we value? Depending on the kinds of “wild” nature rewilding aims to create, rewilding policy will be faced with managing different opportunities and risks for biodiversity and people

    Can reindeer husbandry management slow down the shrubification of the Arctic?

    Get PDF
    Rapid climate change is threatening the stability and functioning of Arctic ecosystems. As the Arctic warms, shrubs have been widely observed to expand, which has potentially serious consequences for global climate regulation and for the ecological processes characterising these ecosystems. However, it is currently unclear why this shrubification has been spatially uneven across the Arctic, with herbivory being suggested as a key regulating factor. By taking advantage of freely available satellite imagery spanning three decades, we mapped changes in shrub cover in the Yamal Peninsula and related these to changes in summer temperature and reindeer population size. We found no evidence that shrubs had expanded in the study site, despite increasing summer temperatures. At the same time, herbivore pressure increased significantly, with the local reindeer population size growing by about 75%. Altogether, our results thus point towards increases in large herbivore pressure having compensated for the warming of the Peninsula, halting the shrubification of the area. This suggests that strategic semi-domesticated reindeer husbandry, which is a common practice across the Eurasian Arctic, could represent an efficient environmental management strategy for maintaining open tundra landscapes in the face of rapid climate change

    Improving predictions of climate change-land use change interactions.

    Get PDF
    Climate change and land use change often interact, altering biodiversity in unexpected ways. Research into climate change-land use change (CC-LUC) interactions has so far focused on quantifying biodiversity outcomes, rather than identifying the underlying ecological mechanisms, making it difficult to predict interactions and design appropriate conservation responses. We propose a risk-based framework to further our understanding of CC-LUC interactions. By identifying the factors driving the exposure and vulnerability of biodiversity to land use change, and then examining how these factors are altered by climate change (or vice versa), this framework will allow the effects of different interaction mechanisms to be compared across geographic and ecological contexts, supporting efforts to reduce biodiversity loss from interacting stressors

    Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward

    Get PDF
    Societal, economic and scientific interests in knowing where biodiversity is, how it is faring and what can be done to efficiently mitigate further biodiversity loss and the associated loss of ecosystem services are at an all-time high. So far, however, biodiversity monitoring has primarily focused on structural and compositional features of ecosystems despite growing evidence that ecosystem functions are key to elucidating the mechanisms through which biological diversity generates services to humanity. This monitoring gap can be traced to the current lack of consensus on what exactly ecosystem functions are and how to track them at scales beyond the site level. This contribution aims to advance the development of a global biodiversity monitoring strategy by proposing the adoption of a set of definitions and a typology for ecosystem functions, and reviewing current opportunities and potential limitations for satellite remote sensing technology to support the monitoring of ecosystem functions worldwide. By clearly defining ecosystem processes, functions and services and their interrelationships, we provide a framework to improve communication between ecologists, land and marine managers, remote sensing specialists and policy makers, thereby addressing a major barrier in the field.JRC.D.6-Knowledge for Sustainable Development and Food Securit
    corecore