13,586 research outputs found

    Treatment approaches for dual diagnosis clients in England

    Get PDF
    Introduction - Dual diagnosis (DD, co-occurrence of substance use and mental health problems) prevalence data in England are limited to specific regions and reported rates vary widely. Reliable information on actual service provision for dual diagnosis clients has not been collated. Thus a national survey was carried out to estimate dual diagnosis prevalence in treatment populations and describe the service provision available for this client population in drug/alcohol (DAS) and mental health services (MHS). Design - A questionnaire was sent to managers of 706 DAS and 2374 MHS. Overall, 249 (39%) DAS and 493 (23%) MHS participated in the survey. Results - In both DAS and MHS, around 32% of clients were estimated to have dual diagnosis problems. However, fewer than 50% of services reported assessing clients for both problem areas. Regarding specific treatment approaches, most services (DAS: 88%, MHS: 87%) indicated working jointly with other agencies. Significantly fewer services used joint protocols (DAS: 55%, MHS: 48%) or shared care arrangements, including access to external drug/alcohol or mental health teams (DAS: 47%, MHS: 54%). Only 25% of DAS and 17% of MHS employed dual diagnosis specialists. Conclusions - Dual diagnosis clients constitute a substantial proportion of clients in both DAS and MHS in England. Despite recent policy initiatives, joint working approaches tend to remain unstructured

    Optimal Control for Generating Quantum Gates in Open Dissipative Systems

    Full text link
    Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control using relaxation parameters against time-optimal control is explored and exemplified in numerical and in algebraic terms: it is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit it requires control fields orders of magnitude lower than the bang-bang decouplings in the latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure

    Ramsey interferometry with generalized one-axis twisting echoes

    Full text link
    We consider a large class of Ramsey interferometry protocols which are enhanced by squeezing and un-squeezing operations before and after a phase signal is imprinted on the collective spin of NN particles. We report an analytical optimization for any given particle number and strengths of (un-)squeezing. These results can be applied even when experimentally relevant decoherence processes during the squeezing and un-squeezing interactions are included. Noise between the two interactions is however not considered in this work. This provides a generalized characterization of squeezing echo protocols, recovering a number of known quantum metrological protocols as local sensitivity maxima, thereby proving their optimality. We discover a single new protocol. Its sensitivity enhancement relies on a double inversion of squeezing. In the general class of echo protocols, the newly found over-un-twisting protocol is singled out due to its Heisenberg scaling even at strong collective dephasing.Comment: 11+8 pages, 7 figures, comments welcome! ; accepted versio

    Modelling and Measurement of Charge Transfer in Multiple GEM Structures

    Get PDF
    Measurements and numerical simulations on the charge transfer in Gas Electron Multiplier (GEM) foils are presented and their implications for the usage of GEM foils in Time Projection Chambers are discussed. A small test chamber has been constructed and operated with up to three GEM foils. The charge transfer parameters derived from the electrical currents monitored during the irradiation with an Fe-55 source are compared with numerical simulations. The performance in magnetic fields up to 2 T is also investigated.Comment: 21 pages, 16 figures, submitted to NIM-

    Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well

    Full text link
    Direct electron spin resonance (ESR) on a high mobility two dimensional electron gas in a single AlAs quantum well reveals an electronic gg-factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin orbit-interaction and a modulation of the electron wavevector caused by the microwave electric field. This contrasts markedly to conventional ESR that detects through the microwave magnetic field.Comment: 4 pages, 4 figure

    The landscape of quantum transitions driven by single-qubit unitary transformations with implications for entanglement

    Full text link
    This paper considers the control landscape of quantum transitions in multi-qubit systems driven by unitary transformations with single-qubit interaction terms. The two-qubit case is fully analyzed to reveal the features of the landscape including the nature of the absolute maximum and minimum, the saddle points and the absence of traps. The results permit calculating the Schmidt state starting from an arbitrary two-qubit state following the local gradient flow. The analysis of multi-qubit systems is more challenging, but the generalized Schmidt states may also be located by following the local gradient flow. Finally, we show the relation between the generalized Schmidt states and the entanglement measure based on the Bures distance
    • …
    corecore