3,300 research outputs found

    ~../1~

    Get PDF
    Safety and Health Administration proposed rule on Proximity Detection Systems for Continuou

    Can herbage nitrogen fractionation in Lolium perenne be improved by herbage management?

    Get PDF
    peer-reviewedThe high degradability of grass protein is an important factor in the low nitrogen (N) utilization of grazing bovines in intensive European grassland systems. We tested the hypothesis that protein degradability as measured by the Cornell Net Carbohydrate and Protein System (CNCPS) protein fractionation scheme, can be manipulated by herbage management tools, with the aim to reduce N loss to the environment. A field experiment comprising the factorial combinations of three fertilizer N application rates (0, 90 and 390 kg N ha−1 year−1), three regrowth periods (2–3, 4–5, and 6–7 weeks), two perennial ryegrass (Lolium perenne L.) cultivars [Aberdart (high sugar content) and Respect (low sugar content)] and two cutting heights (approximately 8 and 12 cm) was conducted at Teagasc, Johnstown Castle Research Centre, Wexford, Ireland. The plots were sampled during four seasons [September/October 2002 (late season), April 2003 (early season), May/June 2003 (mid season) and September 2003 (late season)] and protein fractions were determined in both sheath and lamina material. The protein was highly soluble and on average 19% and 28% of total N was in the form of non-protein N, 16% and 19% in the form of buffer-soluble protein, 52% and 40% in the form of buffer-insoluble protein, and 12% and 13% in the form of potentially available cell wall N for lamina and sheath material, respectively. In both materials only 0.9% of total N was present as unavailable cell wall N. In general the herbage management tools investigated did not have much effect on protein fractionation. The effects of regrowth period, cultivar and cutting height were small and inconsistent. High N application rates significantly increased protein degradability, especially during late season. This is relevant, as it has been shown that enhanced protein degradation increases the potential N loss through urine excretion at a time when urine-N excreted onto pasture is prone to leaching. However, the effect was most evident for sheath material, which forms only a small proportion of the animals' intake. It was concluded that there appears to be little scope for manipulating the herbage-N fractionation through herbage management. The consequences for modelling herbage quality could be positive as there does not seem to be a need to model the individual N fractions; in most cases the N fractions can be expressed as a fixed proportion of total N instead

    How Will the Future of Work Shape Osh Research and Practice? a Workshop Summary

    Get PDF
    Growth of the information economy and globalization of labor markets will be marked by exponential growth in emerging technologies that will cause considerable disruption of the social and economic sectors that drive the global job market. These disruptions will alter the way we work, where we work, and will be further affected by the changing demographic characteristics and level of training of the available workforce. These changes will likely result in scenarios where existing workplace hazards are exacerbated and new hazards with unknown health effects are created. The pace of these changes heralds an urgent need for a proactive approach to understand the potential effects new and emerging workplace hazards will have on worker health, safety, and well-being. As employers increasingly rely on non-standard work arrangements, research is needed to better understand the work organization and employment models that best support decent work and improved worker health, safety, and well-being. This need has been made more acute by the SARS-CoV-2 global pandemic that has resulted in dramatic changes in employment patterns, millions of lost jobs, an erosion of many economic sectors, and widespread disparities which further challenge occupational safety and health (OSH) systems to ensure a healthy and productive workplace. to help identify new research approaches to address OSH challenges in the future, a virtual workshop was organized in June 2020 with leading experts in the fields of OSH, well-being, research methods, mental health, economics, and life-course analysis. A paradigm shift will be needed for OSH research in the future of work that embraces key stakeholders and thinks differently about research that will improve lives of workers and enhance enterprise success. A more transdisciplinary approach to research will be needed that integrates the skills of traditional and non-traditional OSH research disciplines, as well as broader research methods that support the transdisciplinary character of an expanded OSH paradigm. This article provides a summary of the presentations, discussion, and recommendations that will inform the agenda of the Expanded Focus for Occupational Safety and Health (Ex4OSH) International Conference, planned for December 2021

    Potential Scenarios and Hazards in the Work of the Future: a Systematic Review of the Peer-Reviewed and Gray Literatures

    Get PDF
    It would be useful for researchers, practitioners, and decision-makers to anticipate the hazards that workers will face in the future. The focus of this study is a systematic review of published information to identify and characterize scenarios and hazards in the future of work. Eleven bibliographic databases were systematically searched for papers and reports published from 1999 to 2019 that described future of work scenarios or identified future work-related hazards. to compile a comprehensive collection of views of the future, supplemental and ad hoc searches were also performed. After screening all search records against a set of predetermined criteria, the review yielded 36 references (17 peer-reviewed, 4 gray, and 15 supplemental) containing scenarios. In these, the future of work was described along multiple conceptual axes (e.g. labor market changes, societal values, and manual versus cognitive work). Technology was identified as the primary driver of the future of work in most scenarios, and there were divergent views in the literature as to whether technology will create more or fewer jobs than it displaces. Workforce demographics, globalization, climate change, economic conditions, and urbanization were also mentioned as influential factors. Other important themes included human enhancement, social isolation, loneliness, worker monitoring, advanced manufacturing, hazardous exposures, sustainability, biotechnology, and synthetic biology. Pandemics have not been widely considered in the future of work literature, but the recent COVID-19 pandemic illustrates that was short-sighted. Pandemics may accelerate future of work trends and merit critical consideration in scenario development. Many scenarios described \u27new\u27 or \u27exacerbated\u27 psychosocial hazards of work, whereas comparatively fewer discussed physical, chemical, or biological hazards. Various preventive recommendations were identified. In particular, reducing stress associated with precarious work and its requirements of continual skill preparation and training was acknowledged as critical for protecting and promoting the health and well-being of the future workforce. In conclusion, the future of work will be comprised of diverse complex scenarios and a mosaic of old and new hazards. These findings may serve as the basis for considering how to shape the future of work
    corecore