3,516 research outputs found

    Bounds on Decoherence and Error

    Get PDF
    When a confined system interacts with its walls (treated quantum mechanically), there is an intertwining of degrees of freedom. We show that this need not lead to entanglement, hence decoherence. It will generally lead to error. The wave function optimization required to avoid decoherence is also examined.Comment: 10 pages, plain TeX, no figure

    Opposite Thermodynamic Arrows of Time

    Full text link
    A model in which two weakly coupled systems maintain opposite running thermodynamic arrows of time is exhibited. Each experiences its own retarded electromagnetic interaction and can be seen by the other. The possibility of opposite-arrow systems at stellar distances is explored and a relation to dark matter suggested.Comment: To appear in Phys. Rev. Let

    Imaging geometry through dynamics: the observable representation

    Full text link
    For many stochastic processes there is an underlying coordinate space, VV, with the process moving from point to point in VV or on variables (such as spin configurations) defined with respect to VV. There is a matrix of transition probabilities (whether between points in VV or between variables defined on VV) and we focus on its ``slow'' eigenvectors, those with eigenvalues closest to that of the stationary eigenvector. These eigenvectors are the ``observables,'' and they can be used to recover geometrical features of VV

    A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems

    Full text link
    The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Forster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.Comment: 20 pages, 6 figure

    Path integral in a magnetic field using the Trotter product formula

    Get PDF
    The derivation of the Feynman path integral based on the Trotter product formula is extended to the case where the system is in a magnetic field.Comment: To appear in the American Journal of Physics, 200

    Stability of quantum breathers

    Full text link
    Using two methods we show that a quantized discrete breather in a 1-D lattice is stable. One method uses path integrals and compares correlations for a (linear) local mode with those of the quantum breather. The other takes a local mode as the zeroth order system relative to which numerical, cutoff-insensitive diagonalization of the Hamiltonian is performed.Comment: 4 pages, 3 figure

    Statistical comparison of ensemble implementations of Grover's search algorithm to classical sequential searches

    Full text link
    We compare pseudopure state ensemble implementations, quantified by their initial polarization and ensemble size, of Grover's search algorithm to probabilistic classical sequential search algorithms in terms of their success and failure probabilities. We propose a criterion for quantifying the resources used by the ensemble implementation via the aggregate number of oracle invocations across the entire ensemble and use this as a basis for comparison with classical search algorithms. We determine bounds for a critical polarization such that the ensemble algorithm succeeds with a greater probability than the probabilistic classical sequential search. Our results indicate that the critical polarization scales as N^(-1/4) where N is the database size and that for typical room temperature solution state NMR, the polarization is such that the ensemble implementation of Grover's algorithm would be advantageous for N > 10^2

    Closed Path Integrals and Renormalisation in Quantum Mechanics

    Full text link
    We suggest a closed form expression for the path integral of quantum transition amplitudes. We introduce a quantum action with renormalized parameters. We present numerical results for the V∼x4V \sim x^{4} potential. The renormalized action is relevant for quantum chaos and quantum instantons.Comment: Revised text, 1 figure added; Text (LaTeX file), 1 Figure (ps file

    Observing trajectories with weak measurements in quantum systems in the semiclassical regime

    Full text link
    We propose a scheme allowing to observe the evolution of a quantum system in the semiclassical regime along the paths generated by the propagator. The scheme relies on performing consecutive weak measurements of the position. We show how weak trajectories" can be extracted from the pointers of a series of measurement devices having weakly interacted with the system. The properties of these "weak trajectories" are investigated and illustrated in the case of a time-dependent model system.Comment: v2: Several minor corrections were made. Added Appendix (that will appear as Suppl. Material). To be published in Phys Rev Let

    Extended self-energy functional approach for strongly-correlated lattice bosons in the superfluid phase

    Full text link
    Among the various numerical techniques to study the physics of strongly correlated quantum many-body systems, the self-energy functional approach (SFA) has become increasingly important. In its previous form, however, SFA is not applicable to Bose-Einstein condensation or superfluidity. In this paper we show how to overcome this shortcoming. To this end we identify an appropriate quantity, which we term DD, that represents the correlation correction of the condensate order parameter, as it does the self-energy for the Green's function. An appropriate functional is derived, which is stationary at the exact physical realizations of DD and of the self-energy. Its derivation is based on a functional-integral representation of the grand potential followed by an appropriate sequence of Legendre transformations. The approach is not perturbative and therefore applicable to a wide range of models with local interactions. We show that the variational cluster approach based on the extended self-energy functional is equivalent to the "pseudoparticle" approach introduced in Phys. Rev. B, 83, 134507 (2011). We present results for the superfluid density in the two-dimensional Bose-Hubbard model, which show a remarkable agreement with those of Quantum-Monte-Carlo calculations.Comment: 1 additional figure showing the region close to the tip of the Mott lobe, minor changes in the tex
    • …
    corecore