Among the various numerical techniques to study the physics of strongly
correlated quantum many-body systems, the self-energy functional approach (SFA)
has become increasingly important. In its previous form, however, SFA is not
applicable to Bose-Einstein condensation or superfluidity. In this paper we
show how to overcome this shortcoming. To this end we identify an appropriate
quantity, which we term D, that represents the correlation correction of the
condensate order parameter, as it does the self-energy for the Green's
function. An appropriate functional is derived, which is stationary at the
exact physical realizations of D and of the self-energy. Its derivation is
based on a functional-integral representation of the grand potential followed
by an appropriate sequence of Legendre transformations. The approach is not
perturbative and therefore applicable to a wide range of models with local
interactions. We show that the variational cluster approach based on the
extended self-energy functional is equivalent to the "pseudoparticle" approach
introduced in Phys. Rev. B, 83, 134507 (2011). We present results for the
superfluid density in the two-dimensional Bose-Hubbard model, which show a
remarkable agreement with those of Quantum-Monte-Carlo calculations.Comment: 1 additional figure showing the region close to the tip of the Mott
lobe, minor changes in the tex