63 research outputs found

    Unique Aspects of the Design of Phase I/II Clinical Trials of Stem Cell Therapy

    Get PDF
    This chapter will review the unique aspects and limitations of the design of phase I/II (safety and efficacy) clinical trials of stem cell therapy. Although the classical pharmacologic principles applicable to drugs are not applicable to biologic (live cell) therapeutic agents, an important stage in the development of any new therapeutic agent is the establishment of an optimal dosage and delivery route. This can be particularly challenging when the treatment is a biologic agent, such as stem cells, that may exert its therapeutic effects via complex or poorly understood mechanisms. To date, clinical studies have shown inconsistent findings regarding the relationship between cell dose and clinical outcomes. This can be at least partially attributed to variations in donor cell type, source, characteristics, dosing/concentration, delivery route, underlying mechanisms of action, and efficacy endpoints tested. The current recommendations will be reviewed herein to give new investigators a general understanding of the unique issues that need to be considered and addressed when designing a stem cell therapy phase I/II clinical trial

    Cosmological Spacetimes from Negative Tension Brane Backgrounds

    Get PDF
    We identify a time-dependent class of metrics with potential applications to cosmology, which emerge from negative-tension branes. The cosmology is based on a general class of solutions to Einstein-dilaton-Maxwell theory, presented in {hep-th/0106120}. We argue that solutions with hyperbolic or planar symmetry describe the gravitational interactions of a pair of negative-tension qq-branes. These spacetimes are static near each brane, but become time-dependent and expanding at late epoch -- in some cases asymptotically approaching flat space. We interpret this expansion as being the spacetime's response to the branes' presence. The time-dependent regions provide explicit examples of cosmological spacetimes with past horizons and no past naked singularities. The past horizons can be interpreted as S-branes. We prove that the singularities in the static regions are repulsive to time-like geodesics, extract a cosmological `bounce' interpretation, compute the explicit charge and tension of the branes, analyse the classical stability of the solution (in particular of the horizons) and study particle production, deriving a general expression for Hawking's temperature as well as the associated entropy.Comment: 43 pages, 8 figures. Published versio

    A Phase II study of autologous mesenchymal stromal cells and c-kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the CCTRN CONCERT-HF trial

    Get PDF
    Aims: CONCERT-HF is an NHLBI-sponsored, double-blind, placebo-controlled, Phase II trial designed to determine whether treatment with autologous bone marrow-derived mesenchymal stromal cells (MSCs) and c-kit positive cardiac cells (CPCs), given alone or in combination, is feasible, safe, and beneficial in patients with heart failure (HF) caused by ischaemic cardiomyopathy. Methods and results: Patients were randomized (1:1:1:1) to transendocardial injection of MSCs combined with CPCs, MSCs alone, CPCs alone, or placebo, and followed for 12 months. Seven centres enrolled 125 participants with left ventricular ejection fraction of 28.6 ± 6.1% and scar size 19.4 ± 5.8%, in New York Heart Association class II or III. The proportion of major adverse cardiac events (MACE) was significantly decreased by CPCs alone (-22% vs. placebo, P = 0.043). Quality of life (Minnesota Living with Heart Failure Questionnaire score) was significantly improved by MSCs alone (P = 0.050) and MSCs + CPCs (P = 0.023) vs. placebo. Left ventricular ejection fraction, left ventricular volumes, scar size, 6-min walking distance, and peak oxygen consumption did not differ significantly among groups. Conclusions: This is the first multicentre trial assessing CPCs and a combination of two cell types from different tissues in HF patients. The results show that treatment is safe and feasible. Even with maximal guideline-directed therapy, both CPCs and MSCs were associated with improved clinical outcomes (MACE and quality of life, respectively) in ischaemic HF without affecting left ventricular function or structure, suggesting possible systemic or paracrine cellular mechanisms. Combining MSCs with CPCs was associated with improvement in both these outcomes. These results suggest potential important beneficial effects of CPCs and MSCs and support further investigation in HF patients

    Key developments in stem cell therapy in cardiology

    No full text
    A novel therapeutic strategy to prevent or reverse ventricular remodeling, the substrate for heart failure and arrhythmias following a myocardial infarction, is the use of cell-based therapy. Successful cell-based tissue regeneration involves a complex orchestration of cellular and molecular events that include stem cell engraftment and differentiation, secretion of anti-inflammatory and angiogenic mediators, and proliferation of endogenous cardiac stem cells. Recent therapeutic approaches involve bone marrow-derived mononuclear cells and mesenchymal stem cells, adipose tissue-derived stem cells, cardiac-derived stem cells and cell combinations. Clinical trials employing mesenchymal stem cells and cardiac- derived stem cells have demonstrated efficacy in infarct size reduction and regional wall contractility improvement. Regarding delivery methods, the safety of catheter-based, transendocardial stem cell injection has been established. These proof-of-concept studies have paved the way for ongoing pivotal trials. Future studies will focus on determining the most efficacious cell type(s) and/or cell combinations and the mechanisms underlying their therapeutic effects

    Link between the renin–angiotensin system and insulin resistance: Implications for cardiovascular disease

    No full text
    The incidence of metabolic syndrome is rapidly increasing in the United States and worldwide. The metabolic syndrome is a complex metabolic and vascular disorder that is associated with inappropriate activation of the renin–angiotensin–aldosterone system (RAAS) in the cardiovascular (CV) system and increased CV morbidity and mortality. Insulin activation of the phosphatidylinositol-3-kinase (PI3K) pathway promotes nitric oxide (NO) production in the endothelium and glucose uptake in insulin-sensitive tissues. Angiotensin (Ang) II inhibits insulin-mediated PI3K pathway activation, thereby impairing endothelial NO production and Glut-4 translocation in insulin-sensitive tissues, which results in vascular and systemic insulin resistance, respectively. On the other hand, Ang II enhances insulin-mediated activation of the mitogen-activated protein kinase (MAPK) pathway, which leads to vasoconstriction and pathologic vascular cellular growth. Therefore, the interaction of Ang II with insulin signaling is fully operative not only in insulin-sensitive tissues but also in CV tissues, thereby linking insulin resistance and CV disease. This notion is further supported by an increasing number of experimental and clinical studies indicating that pharmacological blockade of RAAS improves insulin sensitivity and endothelial function, as well as reduces the incidence of new-onset diabetes in high-risk patients with CV disease. This article reviews experimental and clinical data elucidating the physiological and pathophysiological role of the interaction between insulin and RAAS in the development of insulin resistance as well as CV disease. </jats:p
    • …
    corecore