3,162 research outputs found

    Echo Delay and Overlap with Emitted Orientation Sounds and Doppler-shift Compensation in the Bat, Rhinolophus ferrumequinum

    Get PDF
    The compensation of Doppler-shifts by the bat, Rhinolophusferrumequinum, functions only when certain temporal relations between the echo and the emitted orientation sound are given. Three echo configurations were used: a) Original orientation sounds were electronically Doppler-shifted and played back either cut at the beginning (variable delay) or at the end (variable duration) of the echo. b) Artificial constant frequency echoes with variable delay or duration were clamped to the frequency of the emitted orientation sound at different Doppler-shifts. c) The echoes were only partially Doppler-shifted and the Doppler-shifted component began after variable delays or had variable durations. With increasing delay or decreasing duration of the Doppler-shifted echo the compensation amplitude for a sinusoidally modulated + 3 kHz Dopplershift (modulation rate 0.08 Hz) decreases for all stimulus configurations (Figs. 1, 2, 3). The range of the Doppler-shift compensation system is therefore limited by the delay due to acoustic travel time to about 4 m distance between bat and target. In this range the overlap duration of the echo with the emitted orientation sound is always sufficiently long, when compared with data on the orientation pulse length during target approach from Schnitzler (1968) (Fig. 5)

    Laryngeal Nerve Activity During Pulse Emission in the CF-FM Bat, Rhinolophus ferrumequinum. I. Superior Laryngeal Nerve (External Motor Branch)

    Get PDF
    The activity of the external (motor) branch of the superior laryngeal nerve (SLN), innervating the cricothyroid muscle, was recorded in the greater horseshoe bat,Rhinolophus ferrumequinum. The bats were induced to change the frequency of the constant frequency (CF) component of their echolocation signals by presenting artificial signals for which they Doppler shift compensated. The data show that the SLN discharge rate and the frequency of the emitted CF are correlated in a linear manner

    Hearing Characteristics and Doppler Shift Compensation in South Indian CF-FM Bats

    Get PDF
    1. Echolocation pulses, Doppler shift compensation behaviour under laboratory conditions and frequency response characteristics of hearing were recorded inRhinolophus rouxi, Hipposideros speoris andHipposideros bicolor. 2. The frequencies of the constant frequency portions of the CF-FM pulses lie at about 82.8 kHz forR. rouxi from Mahabaleshwar, at 85.2 kHz forR. rouxi from Mysore. Hipposiderid bats have considerably higher frequencies at 135 kHz inH. speoris and 154.5 kHz inH. bicolor. The mean sound durations were 50 ms, 6.4 ms and 4.7 ms, respectively. 3. R. rouxi compensates for Doppler shifts in a range up to typically 4 kHz of positive Doppler shifts (Fig. 2). The Doppler shift compensation behaviour is almost identical to that ofR. ferrumequinum. 4. H. speoris andH. bicolor do not compensate for Doppler shifts under laboratory conditions. Doppler shifts in the echoes induce emission frequency changes which are not correlated to the presented Doppler shifts (Fig. 3). 5. The frequency response characteristics of hearing ofR. rouxi show characteristic sensitivity changes near the bat's reference frequency as also found inR. ferrumequinum. The threshold differences between the low threshold at the reference frequency and a few hundred Hz below are 40 to 50 dB in awake bats (Fig. 5). 6. Frequency sensitivity changes near the emitted CF-frequency of the bats are less pronounced inH. speoris or almost absent inH. bicolor

    Calculated and experimental data for a 118-mm bore roller bearing to 3 million DN

    Get PDF
    The operating characteristics for 118 mm bore cylindrical roller bearing are examined using the computer program CYBEAN. The predicted results of inner and outer-race temperatures and heat transferred to the lubricant generally compared well with experimental data for shaft speeds to 3 million DN (25,000 rpm), radial loads to 8900 N (2000 lb), and total lubricant flow rates to 0.0102 cu m/min (2.7 gal/min)

    Auditory pontine grey

    Get PDF

    Performance of jet- and inner-ring-lubricated 35 millimeter bore ball bearings operating to 2.5 million DN

    Get PDF
    Parametric tests were conducted with a 35 millimeter bore, angular contact ball bearing having a single outer land guided cage. Lubrication was achieved by flowing oil through axial grooves and radial holes machined in the inner ring of the bearing. Test conditions were a thrust load of 667 N (150 lb), shaft speeds from 48,000 to 72,000 rpm, and an oil inlet temperature of 394 K (250 F). Data from tests where the distribution of the total oil supplied to the inner ring was 50 percent for bearing lubrication and 50 percent for bearing inner ring cooling were compared with those where the distribution pattern was 25 percent lubrication and 75 percent cooling. Successful operation was experienced with both the 50-50 and 25-75 percent flow distribution patterns to 2.5 million DN. The 50-50 percent flow pattern provided the cooler bearing operation of the two inner ring lubricated bearings. The jet lubricated bearing had lower outer ring and higher inner ring temperatures than the inner ring lubricated bearings. Maximum power loss of 2.8 kW (3.7 hp) was experienced with the 25-75 percent flow distribution, and maximum percent cage slip of 7.0 occurred at 72,300 rpm with the 50-50 percent flow distribution

    Feasibility study of a discrete bearing/roller drive rotary joint for the space station

    Get PDF
    The most critical mechanism on board the proposed space station is the continously rotating joint which must accurately align the solar power units with the sun during earth orbit. The feasibility of a multiple, discrete bearing supported joint driven by a self-loading, pinch drive actuator was investigated for this application. This concept appears to offer greater protection against catastrophic jamming, less sensitivity to adverse thermal gradients, greater accessibility to inorbit servicing or replacement and greater adaptability to very large (5 m) truss members than to more conventional continuous support bearing/gear reducer joints. Analytical trade studies performed herein establish that a discrete cam roller bearing support system having eight hangers around a continuous ring would provide sufficient radial and bending stiffness to prevent any degradation in the fundamental frequencies of the solar wing structure. Furthermore, it appears that the pinch roller drive mechanism can be readily sized to meet or exceed system performance and service life requirements. Wear life estimates based on experimental data for a steel roller coated with an advanced polyimide film show a continuous service life more than two orders of magnitude greater than required for this application

    Lubrication and performance of high-speed rolling-element bearings

    Get PDF
    Trends in aircraft engine operating speeds have dictated the need for rolling-element bearings capable of speeds to 3 million DN. A review of high-speed rolling-element bearing state-of-the-art performance and lubrication is presented. Through the use of under-race lubrication and bearing thermal management bearing operation can be obtained to speeds of 3 million DN. Jet lubricated ball bearings are limited to 2.5 million DN for large bore sizes and to 3 million DN for small bore sizes. Current computer programs are able to predict bearing thermal performance

    Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, I-Iipposideros bicolor and I-Iipposideros speoris

    Get PDF
    1. Two hipposiderid bats,H. bicolor andH. speoris, were observed in their natural foraging areas in Madurai (South India). Both species hunt close together near the foliage of trees and bushes but they differ in fine structure of preferred hunting space:H. bicolor hunts within the foliage, especially whenH. speoris is active at the same time, whereasH. speoris never flies in dense vegetation but rather in the more open area (Fig. 1, Table 1). 2. Both species emit CF/FM-sounds containing only one harmonic component in almost all echolocation situations. The CF-parts of CF/FM-sounds are species specific within a band of 127–138 kHz forH. speoris and 147–159 kHz forH. bicolor (Tables 2 and 3). 3. H. speoris additionally uses a complex harmonic sound during obstacle avoidance and during laboratory tests for Doppler shift compensation.H. bicolor consistently emits CF/FM-sounds in these same situations (Fig. 2). 4. Both hipposiderid bats respond to Doppler shifts in the returning echoes by lowering the frequency of the emitted sounds (Fig. 3). However, Doppler compensations are incomplete as the emitted frequencies are decreased by only 55% and 56% (mean values) of the full frequency shifts byH. speoris andH, bicolor, respectively. 5. The differences in Doppler shift compensation, echolocating and hunting behavior suggest thatH. speoris is less specialized on echolocation with CF/FM-sounds thanH. bicolor

    Henri Temianka Correspondence; (schuller)

    Get PDF
    https://digitalcommons.chapman.edu/temianka_correspondence/2758/thumbnail.jp
    • …
    corecore