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Summary 
Parametric tests were conducted in a high-speed 

bearing tester with a 35-millimeter-bore, angular- 
contact ball bearing having a  single-outer-land 
guided cage. Lubrication was achieved by flowing oil 
through axial grooves and radial holes machined in 
the inner ring of  the bearing. Test parameters were a 
thrust  load of 667 newtons (150 lb),  shaft speeds 
from 48 OOO to 72 OOO rpm,  and  an oil-inlet 
temperature of 394 K (250" F). Lubricant flow rates 
to the  bearing  ranged  from 300 to 1900 cm3/min 
(0.08 to 0.50 gal/min). An  outer ring cooling oil flow 
rate  maintained at 1700 cm3/min (0.45 gal/min)  at 
394 K (250" F) oil-inlet temperature was used in some 
tests. Data  from tests where the distribution of the 
total oil supplied to  the inner ring was 50 percent for 
bearing  lubrication and 50 percent for inner ring 
cooling were compared with data  from tests where 
the distribution was  25 percent lubrication and 75 
percent cooling. The  results  of these tests were also 
compared with reported results obtained with a  jet- 
lubricated  bearing with identical dimensions and cage 
design in a previous investigation. 

Successful operation of the 35-millimeter-bore 
bearing with through-the-inner-ring  lubrication was 
accomplished to 2.5 million DN at a thrust  load of 
667 newtons (150 lb) for  both oil distribution 
patterns.  Cooler  bearing  operation was experienced 
with a  total oil distribution of 50-50 percent than 
with 25-75 percent.  However, data  from a previous 
study with jet  lubrication showed lower outer ring 
and higher inner ring temperatures  than did  the data 
from  the  inner-ring-lubricated bearings of this 
investigation. 

Outer ring cooling for  both oil flow distribution 
patterns of this investigation and  for  the referenced 
jet-lubricated  bearing resulted in a substantial 
decrease in outer ring temperature  but  had  a minimal 
effect on inner ring temperature.  A  maximum power 
loss of 2.8 kilowatts (3.7 hp)  occurred at 72 300 rpm 
with an inner  ring  oil flow distribution  pattern of 
25-75 percent at a total oil flow rate  of 1900 
cm3/min (0.50 gal/min).  The power loss increased  a 
maximum of 1.3 kilowatts (1.7 hp) over the speed 
range 47  200 to 72 300 rpm  at  an oil flow rate  of 1900 
cm3/min (0.50 gal/min)for all lubrication  methods 
employed. A maximum cage slip of 7.0 percent 
occurred at 72 300 rpm  at a total  oil flow rate  of 1900 
cm3/min (0.50 gal/min) with a total oil flow 
distribution  pattern of 50-50 percent. The increase in 
percent cage slip with lubricant flow rate was 
minimal for each  lubrication  method used. 

Introduction 
Small advanced engines, 0.5 to 4.6 kg/sec (1 to 10 

lb/sec) of total  airflow,  require bearings that  can 
operate  in  the speed range 2.5 million DN  (product  of 
the  bearing  bore in millimeters and  the  shaft speed in 
rpm)  at high  temperatures  to  achieve  the 
performance objectives set by the U S .  Army  for 
programs such as  STAGG (Small Turbine  Advanced 
Gas  Generator)  and UTTAS (Utility Tactical 
Transport  Aircraft System). The  bearing designs and 
lubrication techniques used must  be refined and 
optimized for reliable engine performance and long 
bearing  life, 

There is a limiting DN value above which a  jet- 
lubricated  bearing is no longer adequate.  The 
centrifugal forces prevent the oil jet  from  properly 
lubricating and cooling the rolling elements and cage, 
and  this results in bearing thermal  instability or cage 
wear. This limiting DN value is about 2.5 million for 
small-bore bearings. With sufficient oil flow and 
proper cage design this limit can be increased slightly 
to 2.8 million as was achieved in reference 1 for a 
30-millimeter-bore, deep-groove ball bearing with an 
outer-land-guided cage. 

In an  effort  to overcome the  detrimental 
centrifugal  effects in high-speed applications, which 
cause  some of the  lubricant supplied by jets  to be 
slung off  the  inner  ring, oil can be supplied to  the 
bearing  through grooves in the  bore and then 
through  radial holes from  the grooves to  the rolling 
elements of the bearing.  This  method  has been 
successfully applied to large-bore ball and roller 
bearings operating  to  3.0 million DN (refs. 2 to 4). 
Even though  customarily  used, DN is a  somewhat 
misleading severity parameter unless comparisons are 
limited to a  narrow  band of bore  diameters. 
Centrifugal  effects vary as  DN2 so that in small-bore 
bearings these effects  can easily be eight times as 
severe as in large-bore bearings (ref. 5). Effective 
lubrication and cooling in a very severe centrifugal 
force field are  the principal  problems  in achieving 
successful operation of small-bore bearings at  ultra 
high speeds. Inner ring lubrication might be a 
solution  although the limited space available for 
machining grooves and radial holes can  be  a  problem 
with small bearings. 

Reference 6  reports results of a high-speed,  jet- 
lubricated  ball  bearing with a  single-outer-land- 
guided-cage. The results of the experimental tests 
reported herein were obtained with a 35-millimeter- 
bore ball  bearing dimensionally identical to  that in 
reference 6. The only  difference is a  modification of 
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the  inner  ring, where radial  holes are machined in the 
axial  grooves  of  the  bearing  bore to facilitate  inner 
ring  lubrication. 

The primary  objective  of  this  study was to 
determine  the  operating  characteristics of the bearing 
under  varying  coolant and  lubricant flow  rates  for 
both inner  and  outer  ring  cooling  and  inner  ring 
injected  lubrication. In some  tests  the  distribution  of 
the  total oil supplied to  the inner  ring was 50 percent 
for  bearing  lubrication and 50 percent  for  inner  ring 
cooling.  In  other  tests 25 percent  of  the  oil was  used 
for lubrication  and 75 percent for cooling. A 
secondary  objective was to  compare the  performance 
of  a  jet-lubricated  bearing  (ref. 6) with that of a 
dimensionally  identical  bearing  having  inner  ring 
injected  lubrication. 

The  bearing  had  a  nominal,  unmounted  contact 
angle of 24" and  a  single-outer-land-guided  cage. 
Provisions were made for inner  ring  lubrication of 
the  bearing  and for  outer ring  cooling. Test 
conditions were a  thrust  load of 667 newtons (150 Ib), 
shaft speeds from 48 000 to 72 000 rpm,  and  an oil- 
inlet  temperature  of 394 K (250" F). The oil was 
injected to the  inner  ring at flow rates  from 300 to 
1900 cm3/min (0.08 to 0.50 gal/min).  Outer  ring 
cooling oil flow rate was maintained  at 1700 
cm3/min (0.45 gallmin)  at 394 K (250" F) oil-inlet 
temperature.  The  lubricant was a  neopentylpolyol 
(tetra)  ester  that  meets  the MIL-L-23699 
specifications. 

Apparatus 

High-speed Bearing Tester 

A general view of the  air-turbine-driven test 
machine is shown in figure 1. A sectional  drawing is 
shown in figure 2. The  shaft is mounted  horizontally 
and is supported by two  preloaded,  angular-contact 
ball  bearings.  The test bearing is assembled into  a 
separate  housing  that  incorporates  the  hardware  for 
lubrication,  oil  removal,  thrust  and  radial  load 
application,  and  instrumentation  for cage speed 
measurement. Test bearing torque is measured with 
strain gages located  near  the  end  of  an  arm  that 
prevents  the  housing  from  rotating.  Thrust  force is 
applied  through  a  combination  of  a  thrust needle 
bearing  and  a  small  roller  support  bearing to 
minimize  test-housing  restraint  during torque 
measurements.  The  test  bearing was lubricated 
through  the  inner  ring.  Oil was pumped by 
centrifugal  force  from  the  center  of  the  hollow  shaft 
through  axial  grooves in the  test-bearing  bore  and 
through  a series of  small  radial  holes, 0.762 
millimeter (0.030 in.)  in  diameter, to the  bearing 
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Figure L - High-speed, small-bore-bearing test machine. 

inner  race.  Those axial grooves in the  bearing  bore 
that did not  have  radial holes allowed oil to flow 
under  the  ring for inner ring cooling. To vary the 
distribution of the  total oil flow  for  lubrication  and 
for inner  ring  cooling,  certain  radial  holes were 
plugged before  the test bearing was installed.  Cooling 
oil was supplied to  the  outer ring by means  of holes 
and  grooves in the  bearing  housing, as shown in 
figure 2. 

Shaft speed (inner  ring  speed) was measured with a 
magnetic  probe. Ball-pass frequency (cage speed) was 
determined  by  analyzing  signals  from a 
semiconductor  strain gage mounted  on  the  inside 
diameter  of  the  test-bearing  housing.  Two 
thermocouples were assembled in the  shaft  to 
measure  inner  ring  temperatures  through  a  rotating 
telemetry  system.  Outer  ring  temperatures were 
obtained by two  thermocouples  installed in the  test- 
bearing  housing.  The high-speed bearing  tester is 
described in detail in references 6 and 7. 

Test Bearing 

The test  bearing was an ABEC-7 grade, 
35-millimeter-bore,  angular-contact ball bearing with 
a single-outer-land-guided  cage, as shown in figure 
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Figure 2 - Schematic of high-speed,  small-bore-bearing  test  rig. 
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Figure 3. - Angular-contact  ball  bearing. 

3(a). The bearing  contained 16 balls each  with a 
nominal  diameter  of 7.14  millimeters  (0.281 in.). The 
bearing design permitted  lubrication  through  the 
inner ring by means  of  axial  grooves machined  in the 
bore.  There were  16 axial grooves in the  bearing 
bore. Eight  0.762-millimeter (0.030-in.) diameter 
holes (one in  every other axial groove)  radiating  from 
the bearing bore  formed  a  flowpath  for  bearing 
lubrication.  Therefore it was assumed that 50 percent 
of  the oil supplied to  the  inner  ring  lubricated  the 
bearing and 50 percent flowed axially through  those 
grooves that  contained  no  radial holes. The  latter 
flow cooled the inner  ring.  In  some  tests, four of the 
eight radial  holes were  plugged to allow  25 percent  of 
the  total flow to be used for bearing  lubrication  and 
75 percent  for  inner ring cooling. The results of these 
tests were compared with those of a  jet-lubricated 
bearing with identical  dimensions and cage  design 
described  in  reference  6 and shown in figure 3@). 

The inner and  outer rings and  the balls were 
manufactured  from consumable-electrode-vacuum- 
melted AISI "50 steel. Nominal  hardness  of  the 
balls and rings was  Rockwell C62 at  room 
temperature.  The  cage was made  from  AISI 4340 
steel ( A M s  6415) heat  treated to Rockwell C28 to 
C36  hardness  and  completely  plated with  0.0203- to 
0.0381-millimeter (O.OOO8- to 0.0015-in.) thick silver 
(AMs 2412). The cage  balance was  within 0.05 g c m  
(7 x 10 - 4  oz-in.). More  complete  spedifications are 
shown  in table  I. 
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TABLE I.-TEST-BEARING SPECIFICATIONS 
-" ~ 

Bearing: 
................................................. 

Outside diameter, mm (in.) ..62 (2.4409: 
Bore, mm (in.) 35 (1.3780: 

............................... 
Width, mm (in.) ............................................... 14 (0.5512: 

Cage: 
Diametral land clearance, mm (in.) ..................... 0.406 (0.016: 
Diametral ball pocket clearance, mm (in.) ........... .0.660 (0.026: 
Material .............................................. 4340 per AMS 6 4 1 5  

(silver plated] 
Hardness ............................................... .Rockwell C28-36 

Balls: 
Number .................................................................... 16 
Size (diameter), mm (in.) ................................... .7.14 (0.28) 
Grade ....................................................................... 10 
Material ..................................................... .CEVM "50 

per AMS 6490 
Hardness .......................................... .Rockwell C60 (min.) 

Race: 
Inner conformity, percent .............................................. 54 
Outer  conformity, percent ............................................ .52 

Assembly: 
Internal radial clearance, mm (in.) .................... 0.074 (0.0029) 
Contact angle, deg ...................................................... .24 

Lubricant 

The oil used for  the  parametric  studies was a 
neopentypolyol  (tetra)  ester.  This  type I1 oil is 
qualified to  the MIL-L-23699 specifications as well 
as to  the internal oil specifications  of most major 
aircraft engine producers.  The  major  properties of 
the oil are presented in table 11. 

Test Procedure 
After  warming  the  test  machine by recirculating 

heated  oil  and  calibrating  the  torque-measuring 
system, a thrust  load  of 667 newtons (150 lb) was 
applied  and  the  lubricant flow rate was set at 1900 
cm3/min (0.50 gal/min).  Outer  ring  cooling was not 
employed  at  this  time.  The  shaft speed was then 
slowly brought  up to  a nominal 28  000 rpm. When 
bearing  and  test  machine  temperatures  stabilized 
(after 20 to 25 min)  the  oil-inlet  temperature, 
lubricant  flow  rate,  and speed were set to the  desired 
values. A test series was run by starting  at  the lowest 
speed, a nominal 48 000 rpm,  and progressing 
through 65 000 and 72 000 rpm  before  changing  the 
lubricant flow rate.  At each speed and flow condition 
a separate test was run  during which outer  ring 
cooling oil flow was employed.  Four  lubricant flow 
rates  to  the bearing  inner  ring of 300 to 1900 
cm3/min (0.08 to 0.50 gal/min) were used. 

After  these  test runs  the resulting data were 
compared with those from  a similar  bearing run with 
jet  lubrication,  as  described in reference  6. If it 
became  apparent  during  the  course  of  testing  that  a 
test  condition  would  result  in  predictable  distress of 
the  test  bearing  or  test  rig, or generate  a  bearing 
temperature  above 491 K (425" F), that test  point was 
aborted  or  omitted. 

Results and Discussion 
Parametric  tests were conducted  in  a high-speed 

bearing  tester with a  35-millimeter-bore  ball  bearing 
having  a  single-outer-land-guided  cage. Test results 
from  this  bearing with lubricant  supplied  through  the 
inner  ring are compared with those  results  obtained 
with a  jet-lubricated  bearing of identical  dimensions 
and cage design as  reported in reference  6. 

Effect of Oil Flow Distribution  Through 
Inner Ring on Bearing Temperature 

The  effect that the  distribution  of  lubricant 
through  the  inner  ring  has  on  bearing  temperature is 
shown in figures  4 and 5. The  total  flow was 
apportioned in two  ways.  In  one way 50 percent of 
the oil flowed through  the  bearing  inner  ring  to 
lubricate  the  bearing and 50 percent flowed axially 
only, for inner  ring  cooling.  In  the  other way the 
distribution of oil flow was 25 percent for lubrication 
and 75 percent  for  cooling. Figures 4  and 5 also  show 
the  effect of outer  ring  cooling on bearing 
temperature,  to  be discussed later. Bearing 
temperature  decreased with increased  lubricant  flow 
rate  to  the bearing  for  all  conditions  investigated. 
The flow distribution  allowing  the  majority  of  the oil 

TABLE 11.-PROPERTIES OF TETRAESTER  LUBRICANTS 

Additives ...................................................... Corrosion and 
oxidation  inhibitors; 

and antiwear and 
antifoam additives 

Kinematic viscosity, cS, at - 
311 K (100" F) .......................................................... 28.5 
372 K (210" F) .......................................................... 5.22 
477 K (400" F) ........................................................ ..I .3 1 

Flashpoint,  K ( O F )  .................................................. 533  (500) 
Autogenous ignition temperature,  K ( O F )  ..................... 694 (800) 
Pour  point, K ( O F )  ................................................ 214 (- 75) 
Volatility (6.5 hr  at 477 K (400" F)), wt '7'0.. .......................... .3.2 
Specific heat at 372 K (210" F), 

J/kg K  (Btu/lb O F )  .......................................... 2140  (0.493) 
Thermal conductivity at 477 K (400" F), 

J/m sec K  (Btu/hr ft O F )  .................................... 0.13 (0.075) 
Specific gravity at 372 K (210" F) .................................... 0.931 
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Lubricant flow through  bearing  inner  ring 
0 50 percent for  lubrication: 50 percent for  inner  ring cooling 
0 25 percent  for  lubrication: 75 percent for  inner  ring cooling 

No outer r ing cooling through  housing "_ Outer r ing cooling through  housing 
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Figure 4 - Effect of lubricant flow rate on bearing  outer  ring 

temperature. 
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Figure 5. - Effect of lubricant  f low  rate  on  bearing  inner rin3 
temperature. 

to cool the inner  ring, namely the 25-75 percent, 
resulted in  a higher outer ring temperature  than  the 
50-50 percent distribution.  This was true  for all three 
shaft speeds (47 200, 64 700, and 72 300 rpm, fig. 4) 
although  the  effect was diminished at  the  two higher 
speeds. This higher outer ring temperature was the 
result of  the decreased amount  of oil flowing radially 
through  the bearing. The added cooling flow through 
the axial grooves in the  inner ring afforded by a flow 
distribution of 25-75 percent did  not  aid in cooling 
the inner ring. This is shown in figure 5, where the 
inner  ring  temperature is actually higher for a flow 
distribution of 25-75 percent than  for a 50-50 
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percent distribution at speeds from 47  200 to 72  300 
rpm.  The cooling effect of  the oil is  less  when it is 
channeled through axial grooves at  the inner ring 
than when it is permitted to radially enter the 
bearing.  The  amount  of cooling that  can  be 
accomplished with the axial oil flowpath in the inner 
ring grooves is greatly limited by the small surface 
area  that  this oil contacts. 

The results of tests shown in figures 4 and 5 
indicate that  an oil flow distribution  of 50-50 for 
lubrication and inner ring cooling is the  more 
desirable of the two methods used here.  Both  inner 
and outer ring temperatures were lower at all speeds 
and lubricant flow rates when the bearing was tested 
under the  conditions of  50-50 percent flow 
distribution. 

Outer ring cooling in which the oil was maintained 
at a flow rate of  1700 cm3/min (0.45 gal/min)  at 
394 K (250" F) oil-inlet temperature was employed in 
some tests. The results are also shown in figures 4 
and 5 .  At the lowest shaft speed of 47  200 rpm (fig. 
4(a)) outer ring cooling reduced the  outer ring 
temperature by about 36 to 8 kelvins  (65 to 14  deg F) 
as  the  total oil flow to  the inner ring was increased 
from 300 to 1900 cm3/min (0.08 to 0.50 gal/min).  At 
the higher speeds, 64  700 and 72  300 rpm (figs.  4(b) 
and (c)), the outer ring temperature reduction was 
about 42 to 16  kelvins  (75 to 28  deg F) as  the  total oil 
flow was increased from 580 to 1900 cm3/min (0.15 
to 0.50 gal/min). The magnitude of  the reduction in 
outer ring temperature with outer ring cooling was 
approximately  equal for  the 50-50 percent and 25-75 
percent total oil flow distributions. 

Outer ring cooling had very little effect on the 
inner ring temperature (fig. 5) for either oil flow 
distribution pattern.  The reduction  of inner ring 
temperature varied from 0 to 6 kelvins (0 to 11  deg F) 
over the  entire  range  of  total oil flows, shaft speeds, 
and oil distribution patterns employed in these tests. 

Comparison  of  Inner Ring and  Jet Lubrication 

The effect of speed on test bearing temperature  for 
50-50 and 25-75 percent total oil flow distribution 
patterns  through  the inner ring is shown in figure 6 
and compared with that of the jet-lubricated  bearing 
reported in reference 6.  Both bearings were 
dimensionally identical and also  had a single-outer- 
land-guided  cage.  Bearing temperature varied 
directly with speed and inversely  with total oil flow. 
Outer ring temperatures were higher than inner ring 
temperatures for  both lubrication  methods used. 
Outer  ring  temperatures were  lower and inner ring 
temperatures higher with a jet-lubricated bearing 
over the range  of speeds and  total oil flow rates 
investigated. The oil impinging on the inner ring 
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from  the  jets was apparently slung off  the ring so 
rapidly that only a minimal amount  of inner ring 
cooling  occurred, and  thus inner ring temperatures 
were high. However, since this oil had  not gained 
much  heat  from the inner ring, it impinged on  the 
outer ring at a cooler temperature  than did the oil in 
the inner-ring-lubricated bearings.  Also, most of the 
total oil flow through  the  jets contacted the outer 
race to provide  cooling, whereas a maximum  of 50 or 
25 percent of the  total oil flowing through  the inner 
ring grooves contacted the outer race when inner ring 
lubrication was used. For these reasons the  outer ring 
of the jet-lubricated  bearing was at a lower 
temperature  than  the outer ring of the inner-ring- 
lubricated  bearing. 

Bearing Power Loss 

Two  approaches were  used to determine bearing 
power loss. In the  first,  outer ring torque was 
measured.  In the second,  heat rejected to  the 
lubricant was determined. 

Bearing power loss  is dissipated in the  form  of  heat 
rejected  to  the  lubricant  and  surrounding 
environment by conduction,  convection, and radia- 
tion.  To  obtain a measure of  this  heat rejection and 
thus power loss  within the bearing, oil-inlet 
and -outlet temperatures were obtained for all con- 
ditions  of  lubricant flow. Total heat absorbed by the 
lubricant was obtained  from  the standard heat 
transfer  equation 

where 
QT 

C P  
M 

tout 
t i n  

The 
torque 

total heat transfer rate  to  the lubricant, 

mass flow rate, kg/min (lblmin) 
specific heat,  J/kg K (Btu/lb O F )  

oil-outlet temperature, K ( O F )  

oil-inlet temperature, K ("Fj 
power loss in the bearing obtained  from 
measurements  taken with a strain gage 

J/min (Btu/min) 

attached  to  the bearing housing is shown in figufe 7. 
The measured torque  for  the  jet-lubricated  and inner- 
ring-lubricated bearings was  0.011 to 0.033 newton 
meter (1.00 to 2.90 lb  in.) over the lubricant flow 
range and speeds tested.  Power loss increased with 
speed at each flow rate investigated. The greatest 
increase in power loss was about 1.27 kilowatts (1.7 
hp)  at a total oil flow rate of 1900 cm3/min (0.50 
gal/min) over a speed range  of about 47 OOO to 72 000 
rpm (fig. 7(d)). There was  very little difference in 
power loss for  the two  methods of lubrication 
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employed  over  the  range of oil flows and  shaft  speeds 
tested except for  the  jet-lubricated  bearings at  the 
two  highest flow rates  (figs. 7(c) and (d)).  The  jet- 
lubricated  bearing at oil flow rates  of 1300 and 1900 
cm3 /min (0.35 and 0.50 gal/min)  showed  slightly less 
power loss than  the  inner-ring-lubricated  bearing. 

The  results of heat  transfer  calculations  for a 
single-outer-land-guided-cage  bearing  using  two 

different  methods of lubrication are  compared  in 
figure 8. For  convenience,  values for heat  transfer 
were converted from joules  per  minute to kilowatts. 
These data  are almost  identical to those in figure 7 
for power loss from  torque  measurements.  The 
values of  power  rejected to  the  lubricant  for  both 
methods  of  lubrication are similar except at  the two 
higher  lubricant  flow  rates (figs. 8(c) and (d)). At 
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Figure 7. - Effect of shaft speed on power loss obtained  from  torque 
measurements  for two different  lubricant  supply systems. No 
outer  ring  cooling  through  housing. 

these flow rates  the  jet-lubricated  bearing  had  the 
lowest value of power rejected to  the  lubricant. 
Maximum power loss was 2.8 kilowatts (3.7 hp)  at 72 
300 rpm (fig. 8(d)) with a  total oil flow  distribution 
pattern of 25-75 percent  through  the  bearing. 

Effect  of  Lubricant Flow on  Cage  Slip 

To determine  percent cage slip,  the epicyclic cage 
speed Cepi at  the  various  test  shaft  speeds was 
obtained  from a computer  program  called 
SHABERTH (ref. 8), which considers  centrifugal 
force  effects  on  contact  angle.  Elastic-contact  forces 
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Figure 8. - Effect of shaft speed on power loss due to heat  rejected to 
lubricant  for two different  lubricant  supply systems. No outer  r ing 
cooling  through  housing. 

are considered in a  race-control  type  of  solution. 
Thermal and  lubricant effects are not  considered in 
this  computer  solution of epicyclic cage speed. A fit 
analysis was not  included in the  SHABERTH 
computations  for  this  report  or  for  references 6 and 
9. However,  subsequent  calculations at  the highest 
speed (72  300 rpm)  and a thrust  load  of 667 N (150 
lb),  considering  all  the  centrifugal  growth  effects on 
the  inner  ring,  showed  the epicyclic speed to change 
only from 33 OOO rpm to 32  720 rpm.  This  resulted in 
the  calculated  slip  changing  from 7.0 to 6.2 percent. 
The  calculated epicyclic cage speeds were combined 
with the  measured  experimental  cage  speed Cap to 
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Figure 9. - Effect of lubrkant flow rate on  cage slip for two different 
lubricant supply systems. No outer r ing cooling through housing. 

obtain  percent cage slip as follows: 

Percent cage slip = (1 - C ,  /Cepi)( 100) (2) 

The effect  of  lubricant  flow rate  on percent  cage 
slip for  a  single-outer-land-guided-cage  bearing using 
two  different  methods  of  lubrication is shown in 
figure  9.  For the  three  speeds (47  200, 64 800, and 
72 300 rpm)  and  the flow rates  tested the percent cage 
slip was minimal  for  each  method of  lubrication.  The 
small  increase in slip with increasing flow rate is 
primarily due  to  additional  drag  on  the balls. The  jet- 
lubricated  bearing  showed  a  higher  percent  slip  than 
the  two  inner-ring-lubricated  bearings at speeds  of 

47 200 and 64 800 rpm (figs. 9(a) and (b)). However, 
at  the maximum  speed  of 72 300 rpm  (fig. 9(c)) the 
percent cage slip for all three  bearings was essentially 
equal, with the jet-lubricated  bearing showing a 
slightly lower percent cage slip at  lubricant flow rates 
above  approximately 1100 cm3/min (0.30 gal/min). 
As the speed was increased,  the  centrifugal  force 
generated  caused more oil  from  the  jets to be slung 
off  the  bearing,  thus allowing less to enter as a 
lubricant  for  the  rolling  elements.  With less oil 
present, less  plowing of  the balls and cage occurred, 
and  this resulted in a lower rate of  increase in cage 
slip than  for  the inner-ring-lubricated  bearings. The 
maximum  percent  cage slip of 7.0 occurred at 72 300 
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Figure 10. - Effect  of  shaft speed on cage sl ip  for two dif ferent  lubricant  supply systems. No outer  r ing  cool ing 
th rough  hou i ing .  

rpm  at  a  total oil flow rate of 1900 cm3/min (0.50 bearings.  Increased  percent cage slip with increased 
gal/min)  (fig. 9(c))  with a  total oil flow distribution  shaft speed may  be partially  due to centrifugal  forces 
pattern of 50-50 percent  through  the  inner  ring.  decreasing  the  ball  load  and  thus  the  traction at  the 

Figure 10 shows  that  percent cage slip  increases  inner  race  contact.  The  jet-lubricated  bearing  showed 
with speed at  about the  same  rate for each method  of  a higher percent  cage  slip  than  the  inner-ring- 
lubrication  tested and independently of the  lubricant  lubricated  bearings at the lower flow rates of 580 and 
flow rate, especially for  the  inner-ring-lubricated 760 cm3/min (0.15 and 0.20 gal/min)  (figs.  and 
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(b)) over  the  entire  speed  range  tested.  However, as 
the  flow  rate was increased to 1300 and 1900 
cm3/min (0.35 and 0.50 gal/min) (figs. 1O(c) and 
(d)),  the  rate of increase in cage  slip of the  jet- 
lubricated  bearing was less than  that of the  inner- 
ring-lubricated  bearings at  the higher  speeds  (above 
about 65 OOO rpm).  This  resulted  in a cage  slip  value 
equal to  or less than  the  percent  cage  slip  of  the  inner- 
ring-lubricated  bearings.  Although  the  flow rate was 
high,  the  jet-lubricated  bearing  had a large 
percentage  of  its oil slung  off  the  bearing at the 
higher  speeds, and the  remaining amount of  oil 
flowing  through  the  bearing  approximated  the oil 
flowing  through  the  inner-ring-lubricated  bearings at 
these  test  conditions. Since there was  less oil flowing 
through  the  jet-lubricated  bearing  under  these 
conditions,  the  percent cage slip  decreased to a point 
approximately  equal to  that of the  inner-ring- 
lubricated  bearings  as  shown  in  figures 1O(c) and (d). 
The maximum cage slip of 7.0 percent  occurred at 
72 300 rpm at  a  total flow rate of  1900 cm3/min 
(0.50 gal/min) with an oil  distribution  pattern of 
50-50 percent (fig. lO(d)). 

Summary of Results 
Parametric  tests were conducted in a high-speed 

bearing  tester  on  a  35-millimeter-bore  ball  bearing 
with a  single-outer-land-guided  cage. Axial grooves 
and  radial  holes  machined  in  the  inner  ring of the 
bearing  permitted  lubrication  through  the  bearing 
inner  ring. Test parameters were a  thrust  load  of 667 
newtons (150 lb),  shaft  speeds of a  nominal 48 OOO to 
72 OOO rpm,  and  an  oil-inlet  temperature of 394 K 
(250" F). Total oil flow to the  bearing was  300 to 
1900 cm3/min (0.08 to 0.50 gallmin). An  outer ring 
cooling oil flow rate  maintained  at 1700 cm3/min 
(0.45 gal/min)  at 394 K (250" F) oil-inlet  temperature 
was used in some  tests.  The  distribution  of  the total 
oil supplied to  the inner  ring was  50 percent for 
lubrication of the  rolling  elements  and 50 percent for 
inner  ring  cooling in some  tests.  In  other  tests  the 
distribution was 25 percent  lubrication  and 75 
percent  cooling. Test results  for  a  bearing with oil 
supplied  through  the  inner  ring were compared with 
those  for  a  jet-lubricated  bearing with identical 
dimensions  and cage design as  reported  in a previous 
investigation.  The  following  major  results were 
obtained: 

1. A 35-millimeter-bore,  angular-contact  ball 
bearing with inner  ring  lubrication was successfully 
operated to 2.5 million DN  for  both  the 50-50 
percent  and 25-75 percent oil flow  distributions. 

2. Cooler  bearing  operation was experienced with a 
total oil flow  distribution  pattern  of  50  percent 

lubrication and 50 percent  inner  ring  cooling  than 
with a 25-75 percent  distribution. 

3. Jet  lubrication data from  a  previous  study 
showed lower outer  ring  temperatures  and  higher 
inner  ring  temperatures  than  the  results for inner- 
ring-lubricated  bearings  from  this  investigation. 

4. Outer  ring  cooling  of  both  jet-lubricated  and 
inner-ring-lubricated  bearings  resulted  in a 
substantial  decrease in outer  ring  temperature  but 
had a minimal  effect  on  inner  ring  temperature. 

5. Maximum power loss of 2.8 kilowatts  (3.7 hp) 
occurred at 72 300 rpm with a  total oil flow 
distribution  pattern  of 25-75 percent at  a  total  oil 
flow rate of 1900 cm3/min (0.50 gal/min). 

6. The greatest  increase  in power loss was about 
1.27 kilowatts (1.7 hp)  at  a  total oil flow rate of 1900 
cm3/min (0.50  gal/min) over a speed range  of  about 
47  200 to 72 300 rpm  and was common to both 
methods of inner-ring  lubrication  employed. 

7. Maximum  percent cage slip of 7.0  occurred at 
72  300 rpm  at  a  total oil flow rate of 1900 cm3/min 
(0.50 gallmin) with a  total oil flow distribution 
pattern of 50-50 percent.  The  increase  in  percent 
cage slip with lubricant flow rate was minimal for 
each flow  distribution  pattern  used;  however,  cage 
slip  increased  significantly  with  speed. 

Lewis Research Center 
National  Aeronautics  and  Space  Administration 
Cleveland,  Ohio,  September  17, 1980 
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