30 research outputs found

    A new mouse line reporting the translation of brain-derived neurotrophic factor using green fluorescent protein

    Get PDF
    While BDNF is receiving considerable attention for its role in synaptic plasticity and in nervous system dysfunction, identifying brain circuits involving BDNF-expressing neurons has been challenging. BDNF levels are very low in most brain areas, except for the large mossy fiber terminals in the hippocampus where BDNF accumulates at readily detectable levels. This report describes the generation of a mouse line allowing the detection of single brain cells synthesizing BDNF. A bicistronic construct encoding BDNF tagged with a P2A sequence preceding GFP allows the translation of BDNF and GFP as separate proteins. Following its validation with transfected cells, this construct was used to replace the endogenous Bdnf gene. Viable and fertile homozygote animals were generated, with the GFP signal marking neuronal cell bodies translating the Bdnf mRNA. Importantly, the distribution of immunoreactive BDNF remained unchanged, as exemplified by its accumulation in mossy fiber terminals in the transgenic animals. GFP-labeled neurons could be readily visualized in distinct layers in the cerebral cortex where BDNF has been difficult to detect with currently available reagents. In the hippocampal formation, quantification of the GFP signal revealed that <10% of the neurons do not translate the Bdnf mRNA at detectable levels, with the highest proportion of strongly labeled neurons found in CA3

    KEAP1 Is Required for Artesunate Anticancer Activity in Non-Small-Cell Lung Cancer

    Get PDF
    Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which regulates cellular response to oxidative stress, are mutated in approximately 30% of non-small-cell lung cancers (NSCLC); therefore, we tested the hypothesis that KEAP1 is required for artesunate sensitivity in NSCLC. Dose response assays identified A549 cells, which have a G333C-inactivating mutation in KEAP1, as resistant to artesunate, with an IC50 of 23.6 µM, while H1299 and H1563 cells were sensitive to artesunate, with a 10-fold lower IC50. Knockdown of KEAP1 through siRNA caused increased resistance to artesunate in H1299 cells. Alternatively, the pharmacological inhibition of NRF2, which is activated downstream of KEAP1 loss, by ML385 partially restored sensitivity of A549 cells to artesunate, and the combination of artesunate and ML385 was synergistic in both A549 and H1299 cells. These findings demonstrate that KEAP1 is required for the anticancer activity of artesunate and support the further development of NRF2 inhibitors to target patients with mutations in the KEAP1/NRF2 pathway

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Pressor support during a Jarisch Herxheimer reaction after initiation of treatment for Weil\u27s disease.

    No full text
    We present a case of Weil\u27s disease complicated by a Jarisch-Herxheimer reaction (JHR) after initiation of antibiotics while in the emergency department requiring invasive monitoring and vasopressor support. The case is followed by a brief review of the JHR which is rarely observed with treatment of leptospirosis. A healthy 28-year-old female who recently returned from the Caribbean presented to the emergency department with flu-like symptoms. The patient appeared jaundiced with conjunctival suffusion and was ultimately treated with the appropriate antibiotics for leptospirosis in the ED. She decompensated subsequently, requiring supplemental oxygen, central and arterial line placement, and vasopressor support with norepinephrine. Although rarely encountered and not well reported throughout the literature, initiation of antibiotics can cause a JHR reaction given that Leptospira interrogans is a spirochete. This JHR may be self-limited and of short duration, or it can be prolonged and severe, requiring invasive therapies such as central line placement for vasopressor support and intubation. It is suggested that patients started on antibiotics for leptospirosis/Weil\u27s disease should be monitored in the emergency department for a short duration prior to discharge or transfer to a regular medical floor for observation given the possibility for decompensation

    Submillisecond Dynamics of Mastoparan X Insertion into Lipid Membranes

    No full text
    The mechanism of protein insertion into a lipid bilayer is poorly understood because the kinetics of this process is difficult to measure. We developed a new approach to study insertion of the antimicrobial peptide Mastoparan X into zwitterionic lipid vesicles, using a laser-induced temperature-jump to initiate insertion on the microsecond time scale and infrared and fluorescence spectroscopies to follow the kinetics. Infrared probes the desolvation of the peptide backbone and yields biphasic kinetics with relaxation lifetimes of 12 and 117 μs, whereas fluorescence probes the intrinsic tryptophan residue located near the N-terminus and yields a single exponential phase with a lifetime of 440 μs. Arrhenius analysis of the temperature-dependent rates yields an activation energy for insertion of 96 kJ/mol. These results demonstrate the complexity of the insertion process and provide mechanistic insight into the interplay between peptides and the lipid bilayer required for peptide transport across cellular membranes

    Quantum Dots Encapsulated within Phospholipid Membranes: Phase-Dependent Structure, Photostability, and Site-Selective Functionalization

    No full text
    Lipid vesicle encapsulation is an efficient approach to transfer quantum dots (QDs) into aqueous solutions, which is important for renewable energy applications and biological imaging. However, little is known about the molecular organization at the interface between a QD and lipid membrane. To address this issue, we investigated the properties of 3.0 nm CdSe QDs encapsulated within phospholipid membranes displaying a range of phase transition temperatures (<i>T</i><sub>m</sub>). Theoretical and experimental results indicate that the QD locally alters membrane structure, and in turn, the physical state (phase) of the membrane controls the optical and chemical properties of the QDs. Using photoluminescence, ICP-MS, optical microscopy, and ligand exchange studies, we found that the <i>T</i><sub>m</sub> of the membrane controls optical and chemical properties of lipid vesicle-embedded QDs. Importantly, QDs encapsulated within gel-phase membranes were ultrastable, providing the most photostable non-core/shell QDs in aqueous solution reported to date. Atomistic molecular dynamics simulations support these observations and indicate that membranes are locally disordered displaying greater disordered organization near the particle–solution interface. Using this asymmetry in membrane organization near the particle, we identify a new approach for site-selective modification of QDs by specifically functionalizing the QD surface facing the outer lipid leaflet to generate gold nanoparticle–QD assemblies programmed by Watson–Crick base-pairing
    corecore