15 research outputs found

    Induced systemic resistance by N-acylhomoserine lactone producing bacteria in the tomato rhizosphere

    Get PDF
    Rhizosphärebakterien können die Widerstandskraft von Pflanzen gegenüber Pathogenen steigern. Es konnte festgestellt werden, dass die Produktion von N-Acyl-L-homoserinlactonen (AHL) durch Serratia liquefaciens MG1 eine wichtige Rolle bei der Reduktion von Krankheitssymptomen bei Tomatenpflanzen spielt. Bei dieser AHL-induzierten systemischen Resistenz sind mehrere Signalwege beteiligt; es werden sowohl Salicylsäure- wie auch Ethylen-abhängige Abwehrgene in ihrer Expression erhöht. Damit wurden AHL als neue generelle Elicitoren pflanzlicher Abwehrreaktionen charakterisiert.Rhizobacteria can stimulate pathogen resistance in various plant species. Many plant-associated bacteria use N-acylhomoserine lactones (AHL) for intra- and intergeneric communication to recognize environmental conditions in a cell-density dependent manner ('quorum sensing'). In our experiments tomato leaves developed systemic resistance to the fungal pathogen Alternaria alternata following root inoculation with Serratia liquefaciens. The biocontrol activity of S. liquefaciens depended on AHL production. Root-applied AHL affected free salicylic acid contents in roots and defence gene expression in leaves. S. liquefaciens inoculated plants also exhibited elevated salicylic acid levels and enhanced ethylene emission in leaves. It is concluded that salicylic acid and ethylene signaling pathways contribute to AHL -induced systemic resistance because of enhanced expression of both salicylic acid and ethylene dependent genes. Consequently, AHL molecules can be considered new general elicitors of plant defence reactions against pathogens

    Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding pathogenicity island

    Get PDF
    Background: Toxigenic Corynebacterium ulcerans can cause a diphtheria-like illness in humans and have been found in domestic animals, which were suspected to serve as reservoirs for a zoonotic transmission. Additionally, toxigenic C. ulcerans were reported to take over the leading role in causing diphtheria in the last years in many industrialized countries. Methods: To gain deeper insights into the tox gene locus and to understand the transmission pathway in detail, we analyzed nine isolates derived from human patients and their domestic animals applying next generation sequencing and comparative genomics. Results: We provide molecular evidence for zoonotic transmission of C. ulcerans in four cases and demonstrate the superior resolution of next generation sequencing compared to multi-locus sequence typing for epidemiologic research. Additionally, we provide evidence that the virulence of C. ulcerans can change rapidly by acquisition of novel virulence genes. This mechanism is exemplified by an isolate which acquired a prophage not present in the corresponding isolate from the domestic animal. This prophage contains a putative novel virulence factor, which shares high identity with the RhuM virulence factor from Salmonella enterica but which is unknown in Corynebacteria so far. Furthermore, we identified a putative pathogenicity island for C. ulcerans bearing a diphtheria toxin gene. Conclusion: The novel putative diphtheria toxin pathogenicity island could provide a new and alternative pathway for Corynebacteria to acquire a functional diphtheria toxin-encoding gene by horizontal gene transfer, distinct from the previously well characterized phage infection model. The novel transmission pathway might explain the unexpectedly high number of toxigenic C. ulcerans

    CYP71B15 (PAD3) Catalyzes the Final Step in Camalexin Biosynthesis

    No full text
    Camalexin represents the main phytoalexin in Arabidopsis (Arabidopsis thaliana). The camalexin-deficient phytoalexin deficient 3 (pad3) mutant has been widely used to assess the biological role of camalexin, although the exact substrate of the cytochrome P450 enzyme 71B15 encoded by PAD3 remained elusive. 2-(Indol-3-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid (dihydrocamalexic acid) was identified as likely intermediate in camalexin biosynthesis downstream of indole-3-acetaldoxime, as it accumulated in leaves of silver nitrate-induced pad3 mutant plants and it complemented the camalexin-deficient phenotype of a cyp79b2/cyp79b3 double-knockout mutant. Recombinant CYP71B15 heterologously expressed in yeast catalyzed the conversion of dihydrocamalexic acid to camalexin with preference of the (S)-enantiomer. Arabidopsis microsomes isolated from leaves of CYP71B15-overexpressing and induced wild-type plants were capable of the same reaction but not microsomes from induced leaves of pad3 mutants. In conclusion, CYP71B15 catalyzes the final step in camalexin biosynthesis

    Molecular Evidence of Nosocomial Pneumocystis jirovecii Transmission among 16 Patients after Kidney Transplantationâ–¿

    No full text
    In recent years, clusters of Pneumocystis jirovecii (formerly Pneumocystis carinii) pneumonia (PCP) among immunocompromised individuals have been reported. Mostly, the source of infections was suspected to be within the clinical settings when transplant recipients and PCP patients shared hospital facilities. We report on a cluster of 16 renal transplant recipients positive for P. jirovecii. None of them received anti-Pneumocystis prophylaxis prior to P. jirovecii detection. Epidemiological studies revealed that 15 of them had received kidney transplants at a German university hospital and attended the same inpatient and outpatient clinic from January through September 2006. Multilocus sequence typing (MLST) was performed on the following genes: ITS1, β-tub, 26S, and mt26S. P. jirovecii DNA was available from 14 patients and showed identical MLST types among these renal transplant recipients. Surprisingly, one patient who was treated at a different nephrological center and reported no personal contact with patients from the renal transplantation cluster harbored an identical P. jirovecii MLST type. Three HIV-positive patients and one bone-marrow-transplanted hematologic malignancy patient—treated at different medical centers—were used as controls, and different MLST types were revealed. Interestingly, in three of the four previously described regions, new alleles were detected, and one new polymorphism was observed in the mt26S region. The epidemiological data and the genotyping results strongly suggest a nosocomial patient-to-patient transmission of P. jirovecii as the predominant transmission route. Therefore, strict segregation and isolation of P. jirovecii-positive/suspected patients in clinical settings seems warranted

    Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria.

    No full text
    N-acyl-L-homoserine lactone (AHL) signal molecules are utilized by Gram-negative bacteria to monitor their population density (quorum sensing) and to regulate gene expression in a density-dependent manner. We show that Serratia liquefaciens MG1 and Pseudomonas putida IsoF colonize tomato roots, produce AHL in the rhizosphere and increase systemic resistance of tomato plants against the fungal leaf pathogen, Alternaria alternata. The AHL-negative mutant S. liquefaciens MG44 was less effective in reducing symptoms and A. alternata growth as compared to the wild type. Salicylic acid (SA) levels were increased in leaves when AHL-producing bacteria colonized the rhizosphere. No effects were observed when isogenic AHL-negative mutant derivatives were used in these experiments. Furthermore, macroarray and Northern blot analysis revealed that AHL molecules systemically induce SA- and ethylene-dependent defence genes (i.e. PR1a, 26 kDa acidic and 30 kDa basic chitinase). Together, these data support the view that AHL molecules play a role in the biocontrol activity of rhizobacteria through the induction of systemic resistance to pathogens

    Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria

    No full text
    N-acyl-L-homoserine lactone (AHL) signal molecules are utilized by Gram-negative bacteria to monitor their population density (quorum sensing) and to regulate gene expression in a density-dependent manner. We show that Serratia liquefaciens MG1 and Pseudomonas putida IsoF colonize tomato roots, produce AHL in the rhizosphere and increase systemic resistance of tomato plants against the fungal leaf pathogen, Alternaria alternata. The AHL-negative mutant S. liquefaciens MG44 was less effective in reducing symptoms and A. alternata growth as compared to the wild type. Salicylic acid (SA) levels were increased in leaves when AHL-producing bacteria colonized the rhizosphere. No effects were observed when isogenic AHL-negative mutant derivatives were used in these experiments. Furthermore, macroarray and Northern blot analysis revealed that AHL molecules systemically induce SA- and ethylene-dependent defence genes (i.e. PR1a, 26 kDa acidic and 30 kDa basic chitinase). Together, these data support the view that AHL molecules play a role in the biocontrol activity of rhizobacteria through the induction of systemic resistance to pathogens
    corecore