6,604 research outputs found
Observations of the Biology of \u3ci\u3ePhasgonophora Sulcata\u3c/i\u3e (Hymenoptera: Chalcididae), a Larval Parasitoid of the Twolined Chestnut Borer, \u3ci\u3eAgrilus Bilineatus\u3c/i\u3e (Coleoptera: Buprestidae), in Wisconsin
Phasgorzophora sulcata Westwood was the principal larval parasitoid of Agrilus bilineatus (Weber) during a study conducted in a natural oak-hardwood forest in the Kettle Moraine State Forest, Jefferson County, Wisconsin. Mean percent larval parasitism was 10.5%. Mean A. bilineatus and P. sulcata densities were, respectively, 53.0 and 6.1 adults per square meter of bark. The theoretical developmental threshold temperatures for over- wintering A. bilineatus and P. sulcata larvae were 17.8 and 19.l0C, respectively. The peak flight period of P. sulcata (9 July 1980) occurred ca. 3 weeks after the A. bilineatus peak flight (18 June 1980) at about the time of peak A. bilineatus egg eclosion. The P. sulcata sex ratios (malexfemales) for laboratory-reared and field-captured adults were 1:1.35 and 1:3.22, respectively
A circular dielectric grating for vertical extraction of single quantum dot emission
We demonstrate a nanostructure composed of partially etched annular trenches
in a suspended GaAs membrane, designed for efficient and moderately broadband
(approx. 5 nm) emission extraction from single InAs quantum dots. Simulations
indicate that a dipole embedded in the nanostructure center radiates upwards
into free space with a nearly Gaussian far-field, allowing a collection
efficiency > 80 % with a high numerical aperture (NA=0.7) optic, and with 12X
Purcell radiative rate enhancement. Fabricated devices exhibit an approx. 10 %
photon collection efficiency with a NA=0.42 objective, a 20X improvement over
quantum dots in unpatterned GaAs. A fourfold exciton lifetime reduction
indicates moderate Purcell enhancement.Comment: (3 pages
Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler
We demonstrate a spectrally broadband and effcient technique for collecting
photoluminescence from a single InAs quantum dot directly into a standard
single mode optical fiber. In this approach, an optical fiber taper waveguide
is placed in contact with a suspended GaAs nanophotonic waveguide with embedded
quantum dots, forming an effcient and broadband directional coupler with
standard optical fiber input and output. Effcient photoluminescence collection
over a wavelength range of tens of nanometers is demonstrated, and a maximum
collection effciency of 6.05 % (corresponding single photon rate of 3.0 MHz)
into a single mode optical fiber was estimated for a single quantum dot
exciton
Correlations Beyond the Nearest-Neighbor Level in Grain Boundary Networks
Correlations among \u27special\u27 and \u27general\u27 grain boundaries are studied on two-dimensional networks, by examining the configurational entropy of boundary structures as well as percolation thresholds. Consideration of crystallographic constraints at various length scales reveals that higher-order constraints play a role in boundary connectivity and network structure. Implications for grain boundary engineering are discussed and directions for future work highlighted
- …