The Great Lakes Entomologist

Volume 14 Number 2 - Summer 1981 *Number 2 - Summer* 1981

Article 7

June 1981

Observations of the Biology of *Phasgonophora Sulcata* (Hymenoptera: Chalcididae), a Larval Parasitoid of the Twolined Chestnut Borer, *Agrilus Bilineatus* (Coleoptera: Buprestidae), in Wisconsin

R. A. Haack University of Wisconsin

D. M. Benjamin University of Wisconsin

B. A. Schuh University of Wisconsin

Follow this and additional works at: https://scholar.valpo.edu/tgle

Part of the Entomology Commons

Recommended Citation

Haack, R. A.; Benjamin, D. M.; and Schuh, B. A. 1981. "Observations of the Biology of *Phasgonophora Sulcata* (Hymenoptera: Chalcididae), a Larval Parasitoid of the Twolined Chestnut Borer, *Agrilus Bilineatus* (Coleoptera: Buprestidae), in Wisconsin," *The Great Lakes Entomologist*, vol 14 (2) Available at: https://scholar.valpo.edu/tgle/vol14/iss2/7

This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu. 1981

THE GREAT LAKES ENTOMOLOGIST

113

OBSERVATIONS ON THE BIOLOGY OF PHASGONOPHORA SULCATA (HYMENOPTERA: CHALCIDIDAE), A LARVAL PARASITOID OF THE TWOLINED CHESTNUT BORER, AGRILUS BILINEATUS (COLEOPTERA: BUPRESTIDAE), IN WISCONSIN¹

R. A. Haack, D. M. Benjamin, and B. A. Schuh²

ABSTRACT

Phasgonophora sulcata Westwood was the principal larval parasitoid of Agrilus bilineatus (Weber) during a study conducted in a natural oak-hardwood forest in the Kettle Moraine State Forest, Jefferson County, Wisconsin. Mean percent larval parasitism was 10.5%. Mean A. bilineatus and P. sulcata densities were, respectively, 53.0 and 6.1 adults per square meter of bark. The theoretical developmental threshold temperatures for overwintering A. bilineatus and P. sulcata larvae were 17.8° and 19.1°C, respectively. The peak flight period of P. sulcata (9 July 1980) occurred ca. 3 weeks after the A. bilineatus peak flight (18 June 1980) at about the time of peak A. bilineatus egg eclosion. The P. sulcata sex ratios (males:females) for laboratory-reared and field-captured adults were 1:1.35 and 1:3.22, respectively.

Phasgonophora sulcata Westwood (Fig. 1) is the principal larval parasitoid of the twolined chestnut borer, *Agrilus bilineatus* (Weber), in New York and Pennsylvania (Cote and Allen 1980). *P. sulcata* also is the principal larval parasitoid of the bronze birch borer, *Agrilus anxius* Gory (Barter 1957), and the bronze poplar borer, *Agrilus liragus* Barter & Brown (Barter 1965), and it accounted for 1–8% and 2–20% parasitism, respectively, in New Brunswick. We present here observations on the biology of *P. sulcata* recorded during a life-history study of *A. bilineatus* in a natural oak-hardwood forest in the Kettle Moraine State Forest, Jefferson County, Wisconsin, in 1980.

MATERIALS AND METHODS

Percent larval parasitism, borer density, and parasitoid density were determined by rearing *A. bilineatus* and *P. sulcata* adults from naturally infested bark. Approximately 10 m² of bark were collected from the lower boles (1-5 m) of three northern red oaks, *Quercus rubra* L., and two black oaks, *Quercus velutina* Lam., in April and May. The bark was divided equally into 10 emergence cages, maintained at room temperature, and checked daily for adults. The number of reared adults per sample was recorded by species. All *P. sulcata* exit holes were traced back into the bark by splitting with harmer and chisel to determine if they had originated from an *A. bilineatus* pupal chamber.

The theoretical developmental threshold temperatures for overwintering A. *bilineatus* and P. *sulcata* larvae were determined. Approximately 3 m^2 of infested bark were collected on 1 January from the lower boles of two northern red oaks and returned to the laboratory. The bark was placed into four emergence cages and each was maintained separately in environ-

¹Research supported by the School of Natural Resources of the College of Agricultural and Life Sciences, University of Wisconsin-Madison, and the Wisconsin Department of Natural Resources.

²College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706.

THE GREAT LAKES ENTOMOLOGIST

Fig. 1. Phasgonophora sulcata adults (×6.3): female (top), male (bottom).

mental chambers at 20°, 24°, 28°, and 30°C. Adults were removed daily and the number of days to emergence was recorded. Mean developmental time in days was calculated by species for each temperature. The developmental threshold temperatures and their respective linear equations were determined from the 24° and 28°C data.

The adult flight period was investigated by trapping adults on Tree Tanglefoot[®]-coated, 20-cm-wide polyethylene bands, stapled at breast height (1.3 m) around the trunks of six northern red oaks, four black oaks, and seven white oaks, *Quercus alba* L., beginning on 30 May. All trees were stressed to increase their attractiveness to *A. bilineatus* adults by basal girdling with a chain saw on 4 June. *A. bilineatus* and *P. sulcata* adults were removed and counted weekly from 4 June through 17 September.

The sex ratio and sex factor for all laboratory-reared and field-captured *P. sulcata* adults were calculated. Reared adults were those recovered from the developmental-rate and percent-parasitism studies; field-captured adults were those recovered from the flight-period study.

RESULTS AND DISCUSSION

A total of 530 A. bilineatus and 61 P. sulcata adults were reared from 10 m² of bark. Mean percent larval parasitism ($\bar{x} \pm SE$; range) was $10.5\% \pm 2.1$; 2.1–25.0%. A. bilineatus and P. sulcata mean overwintering densities ($\bar{x}/m^2 \pm SE$; range) were 53.0 \pm 6.9; 27–101 and 6.1 \pm 1.4; 1–16, respectively. Also reared were three unidentified braconids (Hymenoptera); one *Tenebroides corticalis* (Melsheimer), (Coleoptera: Trogositidae); and one *Cymatodera bicolor* (Say), (Coleoptera: Cleridae).

The theoretical developmental threshold temperatures for overwintering A. bilineatus and P. sulcata larvae were 17.8° and 19.1°C, respectively. Their respective linear equations were Y=0.00475X-0.0845 for A. bilineatus and Y=0.0036025X-0.06892 for P. sulcata; Y repre-

Haack et al.: Observations of the Biology of <i>Phasgonophora Sulcata</i> (Hyme

1981

THE GREAT LAKES ENTOMOLOGIST

115

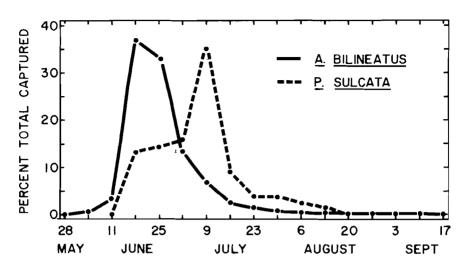


Fig. 2. The 1980 adult flight periods for Agrilus bilineatus (n=12,987) and Phasgonophora sulcata (n=76) in the Kettle Moraine State Forest, Jefferson County, Wisconsin.

Table 1. Mean developmental time in days for overwintering Agrilus bilineatus and <i>Phasgonophora sulcata</i> larvae to complete development in overwintering sites in oak bark and emerge as adults at 20°, 24°, 28°, and 30°C.					
Mean Developmental Time in Days					

Temperature (°C)	Mean Developme Agrilus bilineatus			ntal Time in Days Phasgonophora sulcata		
	$\bar{\mathbf{x}} \pm \mathbf{SE}$	1/x	(n)	$\bar{x} \pm SE$	1/x	(n)
<u> </u>	19.2 ± 0.22	0.0521	(82)	25.8 ± 0.40	0.0388	(21)
28°	20.6 ± 0.26	0.0485	(17)	31.3 ± 0.47	0.0320	(7)
24°	33.9 ± 0.40	0.0295	(7)	57.0 ± 0.58	0.0175	(3)
	83.6 ± 2.03	0.0120	(9)			(0)

sents 1/(mean developmental time in days) and X represents temperature (C°). Mean developmental times for overwintering A. bilineatus and P. sulcata larvae are shown in Table 1. A. bilineatus consistently completed development and emerged before P. sulcata. A. bilineatus overwintered in pupal chambers in the outer bark as mature fourth instar larvae. P. sulcata overwintered within its host; however, the overwintering parasitoid life stage was not determined. Parasitized A. bilineatus larvae constructed normal pupal chambers and positioned themselves normally within the chamber. P. sulcata probably overwintered as early instar larvae since no host disfigurement or discoloration was observed until late April in field-collected specimens; then parasitized larvae turned from mikly white to golden yellow and failed to pupate. A. bilineatus larvae constructed a passage for subsequent adult emergence from their pupal chamber to within 1–2 mm of the bark surface and packed it with frass before overwintering. P. sulcata adults exited via those passages; they constructed a circular exit hole that is distinct from the larger D-shaped A. bilineatus exit hole.

The peak flight period of *P. sulcata* (9 July 1980) occurred ca. 3 weeks after *A. bilineatus* peak flight (18 June 1980) (Fig. 2). A similar flight pattern was observed from sticky-trap

116

THE GREAT LAKES ENTOMOLOGIST

catches on oaks that were girdled on 17 April 1980 in the same area (J. O. Haanstad, pers. comm.). The delayed peak flight of *P. sulcata* with respect to *A. bilineatus* may be a result of differences in their developmental threshold temperatures. The *P. sulcata* peak flight period occurred at about the time of peak *A. bilineatus* egg eclosion. *A. bilineatus* females oviposited in bark cracks and crevices on the bark surface; *P. sulcata* females were observed entering bark cracks and ovipositing near *A. bilineatus* eggs.

The *P. sulcata* sex ratio (males:females) and sex factor (females/males+females) were, respectively, 1:1.30 and 0.57 (n=92) for laboratory-reared adults and 1:3.22 and 0.76 (n=76) for field-captured adults. *P. sulcata* females were more active than males on the bark surface; this probably explains in part the relatively high proportion of captured females.

P. sulcata was the principal larval parasitoid of *A. bilineatus* in this study. The behavior and biology of *P. sulcata* allow it to be an effective parasitoid of *A. bilineatus*.

LITERATURE CITED

Barter, G. W. 1957. Studies of the bronze birch borer, Agrilus anxius Gory, in New Brunswick. Canadian Entomol. 89:12–36.

——. 1965. Survival and development of the bronze poplar borer *Agrilus liragus* Barter & Brown (Coleoptera: Buprestidae). Canadian Entomol. 97:1063–1068.

Cote, W. A., III, and D. C. Allen. 1980. Biology of two-lined chestnut borer, Agrilus bilineatus, in Pennsylvania and New York. Ann. Entomol. Soc. Amer. 73:409-413.