1,875 research outputs found

    Multistep greedy algorithm identifies community structure in real-world and computer-generated networks

    Full text link
    We have recently introduced a multistep extension of the greedy algorithm for modularity optimization. The extension is based on the idea that merging l pairs of communities (l>1) at each iteration prevents premature condensation into few large communities. Here, an empirical formula is presented for the choice of the step width l that generates partitions with (close to) optimal modularity for 17 real-world and 1100 computer-generated networks. Furthermore, an in-depth analysis of the communities of two real-world networks (the metabolic network of the bacterium E. coli and the graph of coappearing words in the titles of papers coauthored by Martin Karplus) provides evidence that the partition obtained by the multistep greedy algorithm is superior to the one generated by the original greedy algorithm not only with respect to modularity but also according to objective criteria. In other words, the multistep extension of the greedy algorithm reduces the danger of getting trapped in local optima of modularity and generates more reasonable partitions.Comment: 17 pages, 2 figure

    Hybrid Architecture for Engineering Magnonic Quantum Networks

    Full text link
    We show theoretically that a network of superconducting loops and magnetic particles can be used to implement magnonic crystals with tunable magnonic band structures. In our approach, the loops mediate interactions between the particles and allow magnetic excitations to tunnel over long distances. As a result, different arrangements of loops and particles allow one to engineer the band structure for the magnonic excitations. Furthermore, we show how magnons in such crystals can serve as a quantum bus for long-distance magnetic coupling of spin qubits. The qubits are coupled to the magnets in the network by their local magnetic-dipole interaction and provide an integrated way to measure the state of the magnonic quantum network.Comment: Manuscript: 4 pages, 3 figures. Supplemental Material: 9 pages, 4 figures. V2: Published version in PRA: 14 pages + 8 figures. Substantial rearrangement of the content of the previous versio

    Some Observations on the Handling of Adams\u27 Platinum-Oxide Hydrogenation Catalyst

    Get PDF
    Two problems are present in the measurement of the exact quantities of catalyst used in hydrogenations with platinum oxide. The first arises from the fact that platinum oxide is highly adsorbent and rapidly gains weight due to adsorption of atmospheric components when it is exposed to air. A procedure is described for making an approximate correction for this weight gain. The second problem is the identity of the actual catalytic material. The observations indicate that this is platinum metal, and it is shown that the platinum content varies with the batch of catalyst

    Exact renormalisation group flow for ultracold Fermi gases in unitary limit

    Full text link
    We study the exact renormalisation group flow for ultracold Fermi-gases in unitary regime. We introduce a pairing field to describe the formation of the Cooper pairs, and take a simple ansatz for the effective action. Set of approximate flow equations for the effective couplings including boson and fermionic fluctuations is derived. At some value of the running scale, the system undergoes a phase transition to a gapped phase. The values of the energy density, chemical potential, pairing gap and the corresponding proportionality constants relating the interacting and non-interacting Fermi gases are calculated. Standard mean field results are recovered if we omit the boson loops.Comment: 11 pages, Revtex, misprints corrected, references and comments adde

    Solid-state magnetic traps and lattices

    Full text link
    We propose and analyze magnetic traps and lattices for electrons in semiconductors. We provide a general theoretical framework and show that thermally stable traps can be generated by magnetically driving the particle's internal spin transition, akin to optical dipole traps for ultra-cold atoms. Next we discuss in detail periodic arrays of magnetic traps, i.e. magnetic lattices, as a platform for quantum simulation of exotic Hubbard models, with lattice parameters that can be tuned in real time. Our scheme can be readily implemented in state-of-the-art experiments, as we particularize for two specific setups, one based on a superconducting circuit and another one based on surface acoustic waves.Comment: 18 pages, 8 figure

    Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout

    No full text
    Wigner crystals are prime candidates for the realization of regular electron lattices under minimal requirements on external control and electronics. However, several technical challenges have prevented their detailed experimental investigation and applications to date. We propose an implementation of two-dimensional electron lattices for quantum simulation of Ising spin systems based on self-assembled Wigner crystals in transition-metal dichalcogenides. We show that these semiconductors allow for minimally invasive all-optical detection schemes of charge ordering and total spin. For incident light with optimally chosen beam parameters and polarization, we predict a strong dependence of the transmitted and reflected signals on the underlying lattice periodicity, thus revealing the charge order inherent in Wigner crystals. At the same time, the selection rules in transition-metal dichalcogenides provide direct access to the spin degree of freedom via Faraday rotation measurements.Comment: 15 pages, 12 figure
    corecore