9,920 research outputs found
Observations of stratospheric source gas profiles during the Arctic winter
An international campaign was performed at ESRANGE rocket base, near Kiruna, Sweden (68 N) from January 4 to February 15 in order to investigate the Chemistry of Ozone in the Polar Stratosphere (CHEOPS). Within the framework of this campaign two sets of large stratospheric air samples were collected by means of a balloon borne cryogenic air sampler. The two balloons were launched on February 1, and February 10, 1988. At present the samples are analyzed in our laboratory for their contents of several long lived trace gases such as CH4, N2O, H2, CO2, CO and the major halocarbons CH3Cl, CFCl3, CF2Cl2, CCl4, CH3CCl3, and C2F3Cl3. The vertical profiles derived from these samples will be presented and compared with previous observations made in February 1987. The data will be discussed in view of the dynamical evolution of the Arctic polar vortex during this winter
Level statistics for quantum -core percolation
Quantum -core percolation is the study of quantum transport on -core
percolation clusters where each occupied bond must have at least occupied
neighboring bonds. As the bond occupation probability, , is increased from
zero to unity, the system undergoes a transition from an insulating phase to a
metallic phase. When the lengthscale for the disorder, , is much greater
than the coherence length, , earlier analytical calculations of quantum
conduction on the Bethe lattice demonstrate that for the metal-insulator
transition (MIT) is discontinuous, suggesting a new universality class of
disorder-driven quantum MITs. Here, we numerically compute the level spacing
distribution as a function of bond occupation probability and system size
on a Bethe-like lattice. The level spacing analysis suggests that for ,
, the quantum percolation critical probability, is greater than , the
geometrical percolation critical probability, and the transition is continuous.
In contrast, for , and the transition is discontinuous such that
these numerical findings are consistent with our previous work to reiterate a
new universality class of disorder-driven quantum MITs.Comment: 8 pages, 11 figure
The Induced Magnetic Field of the Moon: Conductivity Profiles and Inferred Temperature
Electromagnetic induction in the moon driven by fluctuations of the interplanetary magnetic field is used to determine the lunar bulk electrical conductivity. The present data clearly show the north-south and east-west transfer function difference as well as high frequency rollover. The difference is shown to be compatible over the mid-frequency range with a noise source associated with the compression of the local remanent field by solar wind dynamic pressure fluctuations. Models for two, three, and four layer; current layer, double current layer, and core plus current layer moons are generated by inversion of the data using a theory which incorporates higher order multipoles. Core radii conductivities generally are in the range 1200 to 1300 km and 0.001 to 0.003 mhos/m; and for the conducting shell 1500 to 1700 km with 0.0001 to 0.0007 mhos/m with an outer layer taken as nonconducting. Core temperature based on available olivine data is 700 to 1000 C
Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage
Noncyclic covers of knot complements
Hempel has shown that the fundamental groups of knot complements are
residually finite. This implies that every nontrivial knot must have a
finite-sheeted, noncyclic cover. We give an explicit bound, , such
that if is a nontrivial knot in the three-sphere with a diagram with
crossings and a particularly simple JSJ decomposition then the complement of
has a finite-sheeted, noncyclic cover with at most sheets.Comment: 29 pages, 8 figures, from Ph.D. thesis at Columbia University;
Acknowledgments added; Content correcte
Heat transport in rotating convection without Ekman layers
Numerical simulation of rotating convection in plane layers with free slip
boundaries show that the convective flows can be classified according to a
quantity constructed from the Reynolds, Prandtl and Ekman numbers. Three
different flow regimes appear: Laminar flow close to the onset of convection,
turbulent flow in which the heat flow approaches the heat flow of non-rotating
convection, and an intermediate regime in which the heat flow scales according
to a power law independent of thermal diffusivity and kinematic viscosity.Comment: 4 pages, 4 figure
Stable gene replacement in barley by targeted double-strand break induction
Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley
Low disordered, stable, and shallow germanium quantum wells: a playground for spin and hybrid quantum technology
Buried-channel semiconductor heterostructures are an archetype material
platform to fabricate gated semiconductor quantum devices. Sharp confinement
potential is obtained by positioning the channel near the surface, however
nearby surface states degrade the electrical properties of the starting
material. In this paper we demonstrate a two-dimensional hole gas of high
mobility ( cm/Vs) in a very shallow strained germanium
channel, which is located only 22 nm below the surface. This high mobility
leads to mean free paths , setting new benchmarks for holes in
shallow FET devices. Carriers are confined in an undoped Ge/SiGe
heterostructure with reduced background contamination, sharp interfaces, and
high uniformity. The top-gate of a dopant-less field effect transistor controls
the carrier density in the channel. The high mobility, along with a percolation
density of , light effective mass (0.09
m), and high g-factor (up to ) highlight the potential of undoped
Ge/SiGe as a low-disorder material platform for hybrid quantum technologies
Phonon Squeezed States Generated by Second Order Raman Scattering
We study squeezed states of phonons, which allow a reduction in the quantum
fluctuations of the atomic displacements to below the zero-point quantum noise
level of coherent phonon states. We investigate the generation of squeezed
phonon states using a second order Raman scattering process. We calculate the
expectation values and fluctuations of both the atomic displacement and the
lattice amplitude operators, as well as the effects of the phonon squeezed
states on macroscopically measurable quantities, such as changes in the
dielectric constant. These results are compared with recent experiments.Comment: 4 pages, REVTE
- …