22 research outputs found

    Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins

    Get PDF
    Legionella pneumophila is a ubiquitous inhabitant of environmental water reservoirs. The bacteria infect a wide variety of protozoa and, after accidental inhalation, human alveolar macrophages, which can lead to severe pneumonia. The capability to thrive in phagocytic hosts is dependent on the Dot/Icm type IV secretion system (T4SS), which translocates multiple effector proteins into the host cell. In this study, we determined the draft genome sequence of L. pneumophila strain 130b (Wadsworth). We found that the 130b genome encodes a unique set of T4SSs, namely, the Dot/Icm T4SS, a Trb-1-like T4SS, and two Lvh T4SS gene clusters. Sequence analysis substantiated that a core set of 107 Dot/Icm T4SS effectors was conserved among the sequenced L. pneumophila strains Philadelphia-1, Lens, Paris, Corby, Alcoy, and 130b. We also identified new effector candidates and validated the translocation of 10 novel Dot/Icm T4SS effectors that are not present in L. pneumophila strain Philadelphia-1. We examined the prevalence of the new effector genes among 87 environmental and clinical L. pneumophila isolates. Five of the new effectors were identified in 34 to 62% of the isolates, while less than 15% of the strains tested positive for the other five genes. Collectively, our data show that the core set of conserved Dot/Icm T4SS effector proteins is supplemented by a variable repertoire of accessory effectors that may partly account for differences in the virulences and prevalences of particular L. pneumophila strains. Copyright © 2010, American Society for Microbiology. All Rights Reserved

    Building from patient experiences to deliver patient-focused healthcare systems in collaboration with patients: A call to action

    Get PDF
    Patients’ experiences of their diagnosis, condition, and treatment (including the impact on their lives), and their experiences surrounding expectations of care, are becoming increasingly important in shaping healthcare systems that meet the evolving needs and priorities of different patient communities over time; this is an ongoing goal of all healthcare stakeholders. Current approaches that capture patient experiences with data are fragmented, resulting in duplication of effort, numerous requests for information, and increased patient burden. Application of patient experience data to inform healthcare decisions is still emerging and there remains an opportunity to align diverse stakeholders on the value of these data to strengthen healthcare systems. Given the collective value of understanding patient experiences across multiple stakeholder groups, we propose a more aligned approach to the collection of patient experience data. This approach is built on the principle that the patients’ experiences are the starting point, and not just something to be considered at the end of the process. It must also be based on meaningful patient engagement, where patients are collaborators and decision makers at each step, thereby ensuring their needs and priorities are accurately reflected. The resulting data and evidence should be made available for all stakeholders, to inform their decision making and healthcare strategies in ways that meet patient priorities. We call for multi-stakeholder collaboration that will deliver healthcare systems and interventions that are better centered around and tailored to patient experiences, and that will help address patients’ unmet needs

    Phenotypic clines in herbivore resistance and reproductive traits in wild plants along an agricultural gradient.

    No full text
    The conversion of natural landscapes to agriculture is a leading cause of biodiversity loss worldwide. While many studies examine how landscape modification affects species diversity, a trait-based approach can provide new insights into species responses to environmental change. Wild plants persisting in heavily modified landscapes provide a unique opportunity to examine species' responses to land use change. Trait expression within a community plays an important role in structuring species interactions, highlighting the potential implications of landscape mediated trait changes on ecosystem functioning. Here we test the effect of increasing agricultural landscape modification on defensive and reproductive traits in three commonly occurring Brassicaceae species to evaluate plant responses to landscape change. We collected seeds from populations at spatially separated sites with variation in surrounding agricultural land cover and grew them in a greenhouse common garden, measuring defensive traits through an herbivore no-choice bioassay as well as reproductive traits such as flower size and seed set. In two of the three species, plants originating from agriculturally dominant landscapes expressed a consistent reduction in flower size and herbivore leaf consumption. One species also showed reduced fitness associated with increasingly agricultural landscapes. These findings demonstrate that wild plants are responding to landscape modification, suggesting that the conversion of natural landscapes to agriculture has consequences for wild plant evolution

    Phenotypic clines in herbivore resistance and reproductive traits in wild plants along an agricultural gradient

    No full text
    The conversion of natural landscapes to agriculture is a leading cause of biodiversity loss worldwide. While many studies examine how landscape modification affects species diversity, a trait-based approach can provide new insights into species responses to environmental change. Wild plants persisting in heavily modified landscapes provide a unique opportunity to examine species’ responses to land use change. Trait expression within a community plays an important role in structuring species interactions, highlighting the potential implications of landscape mediated trait changes on ecosystem functioning. Here we test the effect of increasing agricultural landscape modification on defensive and reproductive traits in three commonly occurring Brassicaceae species to evaluate plant responses to landscape change. We collected seeds from populations at spatially separated sites with variation in surrounding agricultural land cover and grew them in a greenhouse common garden, measuring defensive traits through an herbivore no-choice bioassay as well as reproductive traits such as flower size and seed set. In two of the three species, plants originating from agriculturally dominant landscapes expressed a consistent reduction in flower size and herbivore leaf consumption. One species also showed reduced fitness associated with increasingly agricultural landscapes. These findings demonstrate that wild plants are responding to landscape modification, suggesting that the conversion of natural landscapes to agriculture has consequences for wild plant evolution
    corecore