3 research outputs found

    ATLANTIC EPIPHYTES: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest

    Get PDF
    Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation

    No full text
    The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut

    Effect of Alkaline and Mechanical Pretreatment of Wheat Straw on Enrichment Cultures from <i>Pachnoda marginata</i> Larva Gut

    No full text
    In order to partially mimic the efficient lignocellulose pretreatment process performed naturally in the gut system of Pachnoda marginata larvae, two wheat straw pretreatments were evaluated: a mechanical pretreatment via cutting the straw into two different sizes and an alkaline pretreatment with calcium hydroxide. After pretreatment, gut enrichment cultures on wheat straw at alkaline pH were inoculated and kept at mesophilic conditions over 45 days. The methanogenic community was composed mainly of the Methanomicrobiaceae and Methanosarcinaceae families. The combined pretreatment, size reduction and alkaline pretreatment, was the best condition for methane production. The positive effect of the straw pretreatment was higher in the midgut cultures, increasing the methane production by 192%, while for hindgut cultures the methane production increased only by 149% when compared to non-pretreated straw. Scanning electron microscopy (SEM) showed that the alkaline pretreatment modified the surface of the wheat straw fibers, which promoted biofilm formation and microbial growth. The enrichment cultures derived from larva gut microbiome were able to degrade larger 1 mm alkaline treated and smaller 250 ”m but non-pretreated straw at the same efficiency. The combination of mechanical and alkaline pretreatments resulted in increased, yet not superimposed, methane yield
    corecore