877 research outputs found

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    What we talk about when we talk about "global mindset": managerial cognition in multinational corporations

    Get PDF
    Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research

    SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer

    Get PDF
    Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer

    Retinal Muller Glia Initiate Innate Response to Infectious Stimuli via Toll-Like Receptor Signaling

    Get PDF
    Ocular surgeries and trauma predispose the eye to develop infectious endophthalmitis, which often leads to vision loss. The mechanisms of initiation of innate defense in this disease are not well understood but are presumed to involve retinal glial cells. We hypothesize that retinal Muller glia can recognize and respond to invading pathogens via TLRs, which are key regulators of the innate immune system. Using the mouse retinal sections, human retinal Muller cell line (MIO-M1), and primary mouse retinal Muller cells, we show that they express known human TLR1-10, adaptor molecules MyD88, TRIF, TRAM, and TRAF6, and co-receptors MD2 and CD14. Consistent with the gene expression, protein levels were also detected for the TLRs. Moreover, stimulation of the Muller glia with TLR 2, 3, 4, 5, 7 and 9 agonists resulted in an increased TLR expression as assayed by Western blot and flow cytometry. Furthermore, TLR agonists or live pathogen (S. aureus, P. aeruginosa, & C. albicans)-challenged Muller glia produced significantly higher levels of inflammatory mediators (TNF-α, IL-1β, IL-6 and IL-8), concomitantly with the activation of NF-κB, p38 and Erk signaling. This data suggests that Muller glia directly contributes to retinal innate defense by recognizing microbial patterns under infectious conditions; such as those in endophthalmitis

    Differential Expression of Chemokine and Matrix Re-Modelling Genes Is Associated with Contrasting Schistosome-Induced Hepatopathology in Murine Models

    Get PDF
    The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis

    Performance of Polymerase Chain Reaction Techniques Detecting Perforin in the Diagnosis of Acute Renal Rejection: A Meta-Analysis

    Get PDF
    BACKGROUND: Studies in the past have shown that perforin expression is up-regulated during acute renal rejection, which provided hopes for a non-invasive and reliable diagnostic method to identify acute rejection. However, a systematic assessment of the value of perforin as a diagnostic marker of acute renal rejection has not been performed. We conducted this meta-analysis to document the diagnostic performance of perforin mRNA detection and to identify potential variables that may affect the performance. METHODOLOGY/PRINCIPAL FINDINGS: Relevant materials that reported the diagnostic performance of perforin mRNA detection in acute renal rejection patients were extracted from electronic databases. After careful evaluation of the studies included in this analysis, the numbers of true positive, true negative, false positive and false negative cases of acute renal rejection identified by perforin mRNA detection were gathered from each data set. The publication year, sample origin, mRNA quantification method and housekeeping gene were also extracted as potential confounding variables. Fourteen studies with a total of 501 renal transplant subjects were included in this meta-analysis. The overall performance of perforin mRNA detection was: pooled sensitivity, 0.83 (95% confidence interval: 0.78 to 0.88); pooled specificity, 0.86 (95% confidence interval: 0.82 to 0.90); diagnostic odds ratio, 28.79 (95% confidence interval: 16.26 to 50.97); and area under the summary receiver operating characteristic curves value, 0.9107±0.0174. The univariate analysis of potential variables showed some changes in the diagnostic performance, but none of the differences reached statistical significance. CONCLUSIONS/SIGNIFICANCE: Despite inter-study variability, the test performance of perforin mRNA detected by polymerase chain reaction was consistent under circumstances of methodological changes and demonstrated both sensitivity and specificity in detecting acute renal rejection. These results suggest a great diagnostic potential for perforin mRNA detection as a reliable marker of acute rejection in renal allograft recipients

    Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+

    Get PDF
    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the pi- pi- pi+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The resonant nature of this wave is evident from the mass-dependent phase differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2 is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged; version 3 updated authors, text shortened, data unchange

    The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    Get PDF
    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs

    Fingolimod: therapeutic mechanisms and ocular adverse effects.

    Get PDF
    Fingolimod is an oral immunomodulating drug used in the management of relapsing-remitting multiple sclerosis (RRMS). We aim to review the published literature on ocular manifestations of fingolimod therapy and their possible underlying mechanisms. The therapeutic effects of fingolimod are mediated via sphingosine receptors, which are found ubiquitously in various organs, including lymphoid cells, central nervous system, cardiac myocytes, and smooth muscle cells. Fingolimod-associated macular oedema (FAME) is the most common ocular side effect but retinal haemorrhages and retinal vein occlusion can occur. The visual consequences appear to be mild and, in cases of FAME, resolution is often attained with discontinuation of therapy. However, in cases of retinal vein occlusion, discontinuation of fingolimod alone may not be sufficient and intra-vitreal therapy may be required. We also propose a pragmatic service pathway for monitoring patients on fingolimod therapy, which includes stratifying them by risk and visual acuity
    corecore