7,053 research outputs found

    Yeah, Right, Uh-Huh: A Deep Learning Backchannel Predictor

    Full text link
    Using supporting backchannel (BC) cues can make human-computer interaction more social. BCs provide a feedback from the listener to the speaker indicating to the speaker that he is still listened to. BCs can be expressed in different ways, depending on the modality of the interaction, for example as gestures or acoustic cues. In this work, we only considered acoustic cues. We are proposing an approach towards detecting BC opportunities based on acoustic input features like power and pitch. While other works in the field rely on the use of a hand-written rule set or specialized features, we made use of artificial neural networks. They are capable of deriving higher order features from input features themselves. In our setup, we first used a fully connected feed-forward network to establish an updated baseline in comparison to our previously proposed setup. We also extended this setup by the use of Long Short-Term Memory (LSTM) networks which have shown to outperform feed-forward based setups on various tasks. Our best system achieved an F1-Score of 0.37 using power and pitch features. Adding linguistic information using word2vec, the score increased to 0.39

    Time series of high resolution spectra of SN 2014J observed with the TIGRE telescope

    Full text link
    We present a time series of high resolution spectra of the Type Ia supernova 2014J, which exploded in the nearby galaxy M82. The spectra were obtained with the HEROS echelle spectrograph installed at the 1.2 m TIGRE telescope. We present a series of 33 spectra with a resolution of R = 20, 000, which covers the important bright phases in the evolution of SN 2014J during the period from January 24 to April 1 of 2014. The spectral evolution of SN 2014J is derived empirically. The expansion velocities of the Si II P-Cygni features were measured and show the expected decreasing behaviour, beginning with a high velocity of 14,000 km/s on January 24. The Ca II infrared triplet feature shows a high velocity component with expansion velocities of > 20, 000 km/s during the early evolution apart from the normal component showing similar velocities as Si II. Further broad P-Cygni profiles are exhibited by the principal lines of Ca II, Mg II and Fe II. The TIGRE SN 2014J spectra also resolve several very sharp Na I D doublet absorption components. Our analysis suggests interesting substructures in the interstellar medium of the host galaxy M82, as well as in our Milky Way, confirming other work on this SN. We were able to identify the interstellar absorption of M82 in the lines of Ca II H & K at 3933 and 3968 A as well as K I at 7664 and 7698 A. Furthermore, we confirm several Diffuse Interstellar Bands, at wavelengths of 6196, 6283, 6376, 6379 and 6613 A and give their measured equivalent widths.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Storage of correlated patterns in a perceptron

    Full text link
    We calculate the storage capacity of a perceptron for correlated gaussian patterns. We find that the storage capacity αc\alpha_c can be less than 2 if similar patterns are mapped onto different outputs and vice versa. As long as the patterns are in general position we obtain, in contrast to previous works, that αc1\alpha_c \geq 1 in agreement with Cover's theorem. Numerical simulations confirm the results.Comment: 9 pages LaTeX ioplppt style, figures included using eps

    Deep levels in a-plane, high Mg-content MgxZn1-xO epitaxial layers grown by molecular beam epitaxy

    Get PDF
    Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples

    Magnetic Flares on Asymptotic Giant Branch Stars

    Get PDF
    We investigate the consequences of magnetic flares on the surface of asymptotic giant branch (AGB) and similar stars. In contrast to the solar wind, in the winds of AGB stars the gas cooling time is much shorter than the outflow time. As a result, we predict that energetic flaring will not inhibit, and may even enhance, dust formation around AGB stars. If magnetic flares do occur around such stars, we expect some AGB stars to exhibit X-ray emission; indeed certain systems including AGB stars, such as Mira, have been detected in X-rays. However, in these cases, it is difficult to distinguish between potential AGB star X-ray emission and, e.g., X-ray emission from the vicinity of a binary companion. Analysis of an archival ROSAT X-ray spectrum of the Mira system suggests an intrinsic X-ray luminosity 2x10^{29} erg/sec and temperature 10^7 K. These modeling results suggest that magnetic activity, either on the AGB star (Mira A) or on its nearby companion (Mira B), is the source of the X-rays, but do not rule out the possibility that the X-rays are generated by an accretion disk around Mira B.Comment: ApJ, Accepted; revised version of astro-ph/020923

    cDNA for S-Adenosyl-L-Homocysteine Hydrolase from Catharanthus roseus

    Full text link

    Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements

    Get PDF
    Label-free biosensor technology based on dynamic mass redistribution (DMR) of cellular constituents promises to translate GPCR signaling into complex optical 'fingerprints' in real time in living cells. Here we present a strategy to map cellular mechanisms that define label-free responses, and we compare DMR technology with traditional second-messenger assays that are currently the state of the art in GPCR drug discovery. The holistic nature of DMR measurements enabled us to (i) probe GPCR functionality along all four G-protein signaling pathways, something presently beyond reach of most other assay platforms; (ii) dissect complex GPCR signaling patterns even in primary human cells with unprecedented accuracy; (iii) define heterotrimeric G proteins as triggers for the complex optical fingerprints; and (iv) disclose previously undetected features of GPCR behavior. Our results suggest that DMR technology will have a substantial impact on systems biology and systems pharmacology as well as for the discovery of drugs with novel mechanisms

    The stellar dynamics and mass of NGC 1316 using the radial velocities of planetary nebulae

    Full text link
    We present a study of the kinematics of the outer regions of the early-type galaxy NGC 1316, based on radial velocity measurements of 43 planetary nebulae as well as deep integrated-light absorption line spectra. The smoothed velocity field of NGC 1316 indicates fast rotation at a distance of 16 kpc, possibly associated with an elongated feature orthogonal to the inner dust lanes. The mean square stellar velocity is approximately independent of radius, and the estimated total mass of the system is 2.6 x 10^11 M_sun within a radius of 16 kpc, implying an integrated mass-to-light ratio of M/L_B = 8.Comment: 39 pages, 14 figures, in press on The Astrophysical Journal n. 50

    The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron-Star Kicks

    Full text link
    We systematically examine how the presence in a binary affects the final core structure of a massive star and its consequences for the subsequent supernova explosion. Interactions with a companion star may change the final rate of rotation, the size of the helium core, the strength of carbon burning and the final iron core mass. Stars with initial masses larger than \sim 11\Ms that experiece core collapse will generally have smaller iron cores at the time of the explosion if they lost their envelopes due to a previous binary interaction. Stars below \sim 11\Ms, on the other hand, can end up with larger helium and metal cores if they have a close companion, since the second dredge-up phase which reduces the helium core mass dramatically in single stars does not occur once the hydrogen envelope is lost. We find that the initially more massive stars in binary systems with masses in the range 8 - 11\Ms are likely to undergo an electron-capture supernova, while single stars in the same mass range would end as ONeMg white dwarfs. We suggest that the core collapse in an electron-capture supernova (and possibly in the case of relatively small iron cores) leads to a prompt explosion rather than a delayed neutrino-driven explosion and that this naturally produces neutron stars with low-velocity kicks. This leads to a dichotomous distribution of neutron star kicks, as inferred previously, where neutron stars in relatively close binaries attain low kick velocities. We illustrate the consequences of such a dichotomous kick scenario using binary population synthesis simulations and discuss its implications. This scenario has also important consequences for the minimum initial mass of a massive star that becomes a neutron star. (Abbreviated.)Comment: 8 pages, 3 figures, submitted to ApJ, updated versio
    corecore