51 research outputs found
Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors
Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients
Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations
Tumors with histological features of pilocytic astrocytoma (PA), but with increased mitotic activity and additional high-grade features (particularly microvascular proliferation and palisading necrosis) have often been designated anaplastic pilocytic astrocytomas. The status of these tumors as a separate entity has not yet been conclusively demonstrated and molecular features have only been partially characterized. We performed DNA methylation profiling of 102 histologically defined anaplastic pilocytic astrocytomas. T-distributed stochastic neighbor-embedding (t-SNE) and hierarchical clustering analysis of these 102 cases against 158 reference cases from 12 glioma reference classes revealed that a subset of 83 of these tumors share a common DNA methylation profile that is distinct from the reference classes. These 83 tumors were thus denominated DNA methylation class anaplastic astrocytoma with piloid features (MC AAP). The 19 remaining tumors were distributed amongst the reference classes, with additional testing confirming the molecular diagnosis in most cases. Median age of patients with MC AAP was 41.5 years. The most frequent localization was the posterior fossa (74%). Deletions of CDKN2A/B (66/83, 80%), MAPK pathway gene alterations (49/65, 75%, most frequently affecting NF1, followed by BRAF and FGFR1) and mutations of ATRX or loss of ATRX expression (33/74, 45%) were the most common molecular alterations. All tumors were IDH1/2 wildtype. The MGMT promoter was methylated in 38/83 tumors (45%). Outcome analysis confirmed an unfavorable clinical course in comparison to PA, but better than IDH wildtype glioblastoma. In conclusion, we show that a subset of histologically defined anaplastic pilocytic astrocytomas forms a separate DNA methylation cluster, harbors recurrent alterations in MAPK pathway genes in combination with alterations of CDKN2A/B and ATRX, affects patients who are on average older than those diagnosed with PA and has an intermediate clinical outcome
Corporate Responses to Climate Change and Financial Performance: The Impact of Climate Policy
This paper examines the relationship between corporate activities to address climate change and stock performance. By separately analyzing the US and European stock markets for different sub-periods, we highlight the impact of the underlying climate policy regime. Methodologically, we compare risk-adjusted returns of stock portfolios comprising corporations that differ in their responses to climate change. In this respect, we apply the flexible Carhart fourfactor model besides the restricted one-factor model based on the Capital Asset Pricing Model (CAPM). While our portfolio analysis shows negative relationships over the entire observation period from 2001 to 2006, we find that a trading strategy, which bought stocks of corporations with a higher level of responses to climate change and sold stocks of corporations with a lower level, led to negative abnormal returns in regions and periods with less ambitious climate policy, but to positive abnormal returns in regions and periods with stringent climate policy
DNA methylation-based classification of central nervous system tumours.
Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology
POPCORN: A Field Study of Photochemistry in North-Eastern Germany
The intensive field study POPCORN (Photo-Oxidant Formation by Plant Emitted Compounds and OH Radicals in North-Eastern Germany) was carried out in a rural area of North-Eastern Germany during August 1994. An overview of the objectives, measurements and major results of this campaign is presented. Measurements of a set of relevant atmospheric trace compounds, including the hydroxyl radical, along with meteorological data were performed to increase the understanding of OH radical chemistry and photo-oxidant formation. Additionally, plant emissions and the exchange of trace gases between a maize field and the atmosphere were investigated. Budgets of selected trace gases were calculated to assess the relative importance of local sources, chemistry or transport. Intercomparisons between measurement techniques were a central issue of POPCORN and included measurements of OH, hydrocarbons, formaldehyde, photolysis frequencies and vertical fluxes. OH radical concentrations were measured simultaneously by LIF (Laser Induced Fluorescence) and DOAS (Differential Optical Absorption Spectroscopy). Both methods showed good agreement. Maximum OH concentrations were around 107 cm–3 and the diurnal cycles closely followed the rate of primary production via ozone photolysis. Generally, the trace gas composition during POPCORN was characterized by relatively low concentrations of most compounds, e.g. CO: 85–200 ppb, ethane: 0.6–2 ppb, and moderate NOx levels: 0.5–5 ppb (at noontime). Concentrations of individual biogenic volatile organic compounds (VOC) were mostly well below 100 ppt. However, formaldehyde and acetaldehyde which partly originate from biological sources were observed at mixing ratios of some ppb
Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: the randomized, open-label, phase II ARTE trial.
The addition of bevacizumab to temozolomide-based chemoradiotherapy (TMZ/RT → TMZ) did not prolong overall survival (OS) in patients with newly diagnosed glioblastoma in phase III trials. Elderly and frail patients are underrepresented in clinical trials, but early reports suggested preferential benefit in this population.
ARTE was a 2 : 1 randomized, multi-center, open-label, non-comparative phase II trial of hypofractionated RT (40 Gy in 15 fractions) with bevacizumab (10 mg/kg×14 days) (arm A, N = 50) or without bevacizumab (arm B, N = 25) in patients with newly diagnosed glioblastoma aged ≥65 years. The primary objective was to obtain evidence for prolongation of median OS by the addition of bevacizumab to RT. Response was assessed by RANO criteria. Quality of life (QoL) was monitored by the EORTC QLQ-C30/BN20 modules. Exploratory studies included molecular subtyping by 450k whole methylome and gene expression analyses.
Median PFS was longer in arm A than in arm B (7.6 and 4.8 months, P = 0.003), but OS was similar (12.1 and 12.2 months, P = 0.77). Clinical deterioration was delayed and more patients came off steroids in arm A. Prolonged PFS in arm A was confined to tumors with the receptor tyrosine kinase (RTK) I methylation subtype (HR 0.25, P = 0.014) and proneural gene expression (HR 0.29, P = 0.025). In a Cox model of OS controlling for established prognostic factors, associations with more favorable outcome were identified for age <70 years (HR 0.52, P = 0.018) and Karnofsky performance score 90%-100% (HR 0.51, P = 0.026). Including molecular subtypes into that model identified an association of the RTK II gene methylation subtype with inferior OS (HR 1.73, P = 0.076).
Efficacy outcomes and exploratory analyses of ARTE do not support the hypothesis that the addition of bevacizumab to RT generally prolongs survival in elderly glioblastoma patients. Molecular biomarkers may identify patients with preferential benefit from bevacizumab.
NCT01443676
- …