127 research outputs found

    Disease Ontology: improving and unifying disease annotations across species.

    Get PDF
    Model organisms are vital to uncovering the mechanisms of human disease and developing new therapeutic tools. Researchers collecting and integrating relevant model organism and/or human data often apply disparate terminologies (vocabularies and ontologies), making comparisons and inferences difficult. A unified disease ontology is required that connects data annotated using diverse disease terminologies, and in which the terminology relationships are continuously maintained. The Mouse Genome Database (MGD, http://www.informatics.jax.org), Rat Genome Database (RGD, http://rgd.mcw.edu) and Disease Ontology (DO, http://www.disease-ontology.org) projects are collaborating to augment DO, aligning and incorporating disease terms used by MGD and RGD, and improving DO as a tool for unifying disease annotations across species. Coordinated assessment of MGD\u27s and RGD\u27s disease term annotations identified new terms that enhance DO\u27s representation of human diseases. Expansion of DO term content and cross-references to clinical vocabularies (e.g. OMIM, ORDO, MeSH) has enriched the DO\u27s domain coverage and utility for annotating many types of data generated from experimental and clinical investigations. The extension of anatomy-based DO classification structure of disease improves accessibility of terms and facilitates application of DO for computational research. A consistent representation of disease associations across data types from cellular to whole organism, generated from clinical and model organism studies, will promote the integration, mining and comparative analysis of these data. The coordinated enrichment of the DO and adoption of DO by MGD and RGD demonstrates DO\u27s usability across human data, MGD, RGD and the rest of the model organism database community. Dis Model Mech 2018 Mar 12;11(3):dmm032839

    GeMInA, Genomic Metadata for Infectious Agents, a geospatial surveillance pathogen database

    Get PDF
    The Gemina system (http://gemina.igs.umaryland.edu) identifies, standardizes and integrates the outbreak metadata for the breadth of NIAID category A–C viral and bacterial pathogens, thereby providing an investigative and surveillance tool describing the Who [Host], What [Disease, Symptom], When [Date], Where [Location] and How [Pathogen, Environmental Source, Reservoir, Transmission Method] for each pathogen. The Gemina database will provide a greater understanding of the interactions of viral and bacterial pathogens with their hosts and infectious diseases through in-depth literature text-mining, integrated outbreak metadata, outbreak surveillance tools, extensive ontology development, metadata curation and representative genomic sequence identification and standards development. The Gemina web interface provides metadata selection and retrieval of a pathogen's; Infection Systems (Pathogen, Host, Disease, Transmission Method and Anatomy) and Incidents (Location and Date) along with a hosts Age and Gender. The Gemina system provides an integrated investigative and geospatial surveillance system connecting pathogens, pathogen products and disease anchored on the taxonomic ID of the pathogen and host to identify the breadth of hosts and diseases known for these pathogens, to identify the extent of outbreak locations, and to identify unique genomic regions with the DNA Signature Insignia Detection Tool

    MIxS-BE : a MIxS extension defining a minimum information standard for sequence data from the built environment

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 8 (2014): 1-3, doi:10.1038/ismej.2013.176.The need for metadata standards for microbe sampling in the built environment.We would like to thank the Alfred P Sloan Foundation grant FP047325-01-PR for support for this project

    The DO-KB Knowledgebase: a 20-year journey developing the disease open science ecosystem.

    Get PDF
    In 2003, the Human Disease Ontology (DO, https://disease-ontology.org/) was established at Northwestern University. In the intervening 20 years, the DO has expanded to become a highly-utilized disease knowledge resource. Serving as the nomenclature and classification standard for human diseases, the DO provides a stable, etiology-based structure integrating mechanistic drivers of human disease. Over the past two decades the DO has grown from a collection of clinical vocabularies, into an expertly curated semantic resource of over 11300 common and rare diseases linking disease concepts through more than 37000 vocabulary cross mappings (v2023-08-08). Here, we introduce the recently launched DO Knowledgebase (DO-KB), which expands the DO\u27s representation of the diseaseome and enhances the findability, accessibility, interoperability and reusability (FAIR) of disease data through a new SPARQL service and new Faceted Search Interface. The DO-KB is an integrated data system, built upon the DO\u27s semantic disease knowledge backbone, with resources that expose and connect the DO\u27s semantic knowledge with disease-related data across Open Linked Data resources. This update includes descriptions of efforts to assess the DO\u27s global impact and improvements to data quality and content, with emphasis on changes in the last two years

    The Human Disease Ontology 2022 update.

    Get PDF
    The Human Disease Ontology (DO) (www.disease-ontology.org) database, has significantly expanded the disease content and enhanced our userbase and website since the DO\u27s 2018 Nucleic Acids Research DATABASE issue paper. Conservatively, based on available resource statistics, terms from the DO have been annotated to over 1.5 million biomedical data elements and citations, a 10× increase in the past 5 years. The DO, funded as a NHGRI Genomic Resource, plays a key role in disease knowledge organization, representation, and standardization, serving as a reference framework for multiscale biomedical data integration and analysis across thousands of clinical, biomedical and computational research projects and genomic resources around the world. This update reports on the addition of 1,793 new disease terms, a 14% increase of textual definitions and the integration of 22 137 new SubClassOf axioms defining disease to disease connections representing the DO\u27s complex disease classification. The DO\u27s updated website provides multifaceted etiology searching, enhanced documentation and educational resources

    Report of the 13th Genomic Standards Consortium Meeting, Shenzhen, China, March 4–7, 2012

    Get PDF
    This report details the outcome of the 13th Meeting of the Genomic Standards Consortium. The three-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on March 5–7, 2012, and was hosted by the Beijing Genomics Institute. The meeting, titled From Genomes to Interactions to Communities to Models, highlighted the role of data standards associated with genomic, metagenomic, and amplicon sequence data and the contextual information associated with the sample. To this end the meeting focused on genomic projects for animals, plants, fungi, and viruses; metagenomic studies in host-microbe interactions; and the dynamics of microbial communities. In addition, the meeting hosted a Genomic Observatories Network session, a Genomic Standards Consortium biodiversity working group session, and a Microbiology of the Built Environment session sponsored by the Alfred P. Sloan Foundatio

    Report of the 14th Genomic Standards Consortium Meeting, Oxford, UK, September 17-21, 2012

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 9 (2014): 1236-1250, doi:10.4056/sigs.4319681.This report summarizes the proceedings of the 14th workshop of the Genomic Standards Consortium (GSC) held at the University of Oxford in September 2012. The workshop’s primary goal was to work towards the launch of the Genomic Observatories (GOs) Network under the GSC. For the first time, it brought together potential GOs sites, GSC members, and a range of interested partner organizations. It thus represented the first meeting of the GOs Network (GOs1). Key outcomes include the formation of a core group of “champions” ready to take the GOs Network forward, as well as the formation of working groups. The workshop also served as the first meeting of a wide range of participants in the Ocean Sampling Day (OSD) initiative, a first GOs action. Three projects with complementary interests – COST Action ES1103, MG4U and Micro B3 – organized joint sessions at the workshop. A two-day GSC Hackathon followed the main three days of meetings.This work was supported in part by the US Na-tional Science Foundation through the research coordination network award RCN4GSC, DBI-0840989 and in part by a grant from the Gordon and Betty Moore Foundation, and travel grants of COST Action ES1103. The stakeholder session was supported by the European Union’s Seventh Framework Programme (FP7 /2007-2013) under grant agreement no 266055, and the Marine Ge-nomics for Users EU FP7 project (Coordination and support action, call FP7-KBBE-2010-4) grant no. 266055. We thank Eppendorf and Biomatters Ltd. for their sponsorship of the meeting

    The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside

    Get PDF
    Background: Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery. Results: We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action. Conclusions: This work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine. Availability: TMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql
    corecore