5 research outputs found

    Efficient simulation of complex capillary effects in advanced manufacturing processes using the finite volume method

    Get PDF
    The accurate representation of surface tension driven flows in multiphase systems is considered a challeng- ing problem to resolve numerically. Although there have been extensive works in the past that have presented approaches to resolve these so called Marangoni flows at the phase boundaries, the question of how to efficiently resolve the interface in a universal and conservative manner remains largely open in comparison. Such problems are of high practical relevance in many manufacturing processes, especially in the microfluidic regime where capillary effects dominate the local force equilibria. In this work, we present a freely available numerical solver based on the Finite Volume Method that is able to resolve arbitrarily complex, incompressible multiphase systems with the mentioned physics at phase boundaries. An efficient solution with respect to the number of degrees of freedom can be obtained by either using high order WENO stencils or by employing adaptive cell refinement. We demonstrate the capabilities of the solver by investigating a model benchmark case as well as a single track laser melting process that is highly relevant within laser additive manufacturing

    Influence of the Constitutive Model for Shotcrete on the Predicted Structural Behavior of the Shotcrete Shell of a Deep Tunnel

    Get PDF
    The aim of the present paper is to investigate the influence of the constitutive model for shotcrete on the predicted displacements and stresses in shotcrete shells of deep tunnels. Previously proposed shotcrete models as well as a new extended damage plasticity model for shotcrete are evaluated in the context of 2D finite element simulations of the excavation of a stretch of a deep tunnel by means of the New Austrian Tunneling Method. Thereby, the behavior of the surrounding rock mass is described by the commonly used HoekBrown model. Differences in predicted evolutions of displacements and stresses in the shotcrete shell, resulting from the different shotcrete models, are discussed and simulation results are compared to available in situ measurement data.(VLID)3044916Version of recor

    On the Influence of Direction-Dependent Behavior of Rock Mass in Simulations of Deep Tunneling Using a Novel Gradient-Enhanced Transversely Isotropic Damage–Plasticity Model

    No full text
    In engineering practice, numerical simulations of deep tunneling are commonly based on isotropic linear–elastic perfectly plastic rock models. Rock, however, commonly exhibits highly nonlinear and distinct direction-dependent mechanical behavior. The former is characterized by irreversible deformation, associated with strain hardening and strain softening, and the degradation of stiffness; the latter is due to the inherent rock structure. Nevertheless, the majority of the existing rock models focuses on the prediction of either the highly nonlinear material behavior or the inherent anisotropic response of rock. The combined effects of nonlinear and direction-dependent rock behavior, particularly in the context of the numerical simulations of tunnel excavation, have rarely been taken into account so far. Thus, it is the aim of the present contribution to demonstrate the influence of both effects on the evolution of the deformation and stress distribution in the rock mass due to deep tunnel excavation on the example of a well-monitored stretch of the Brenner Base Tunnel (BBT). To this end, the recently proposed gradient-enhanced transversely isotropic rock damage–plasticity (TI-RDP) model, is employed for modeling the surrounding rock mass consisting of Innsbruck quartz-phyllite. The material parameters for the nonlinear transversely isotropic rock model are identified by means of three-dimensional finite element simulations of triaxial tests on specimens of Innsbruck quartz-phyllite, conducted for varying loading angles with respect to the foliation planes and different confining pressures. Subsequently, the results of the nonlinear 2D finite element simulations of tunnel excavation are presented for different anisotropy parameters and different orientations of the principal material directions with respect to the tunnel axis. The capabilities of the TI-RDP model are assessed by comparing the numerically predicted results with those obtained by the isotropic version of the RDP model
    corecore