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Abstract—The accurate representation of surface tension
driven flows in multiphase systems is considered a challeng-
ing problem to resolve numerically. Although there have been
extensive works in the past that have presented approaches to
resolve these so called Marangoni flows at the phase boundaries,
the question of how to efficiently resolve the interface in a
universal and conservative manner remains largely open in
comparison. Such problems are of high practical relevance in
many manufacturing processes, especially in the microfluidic
regime where capillary effects dominate the local force equilibria.
In this work, we present a freely available numerical solver based
on the Finite Volume Method that is able to resolve arbitrarily
complex, incompressible multiphase systems with the mentioned
physics at phase boundaries. An efficient solution with respect
to the number of degrees of freedom can be obtained by either
using high order WENO stencils or by employing adaptive cell
refinement. We demonstrate the capabilities of the solver by
investigating a model benchmark case as well as a single track
laser melting process that is highly relevant within laser additive
manufacturing.

Index Terms—finite volume method, adaptive refinement,
marangoni flow, open source software

I. INTRODUCTION

Accurate modelling of complex physics has received con-
siderable attention within the last two decades. This can mostly
be attributed to the fact that an increased understanding of the
phenomena relevant for manufacturing directly leads to more
finely tuned or even new processes that tend to increase output
quality.

Two such examples that shall serve as a guideline for this
work are microfluidic applications and additive manufacturing
of metals. Both groups of processes are characterized by com-
plex flow phenomena that involve several physical phenomena
on a microscopic scale [1], [2]. The fact that those effects tend
to have fast dynamics further complicates the analysis [3]. This
leads to an increased amount of empirical effort necessary to
capture and quantify the flow patterns involved.

Hence, simulation has become an important alternative to
extensive experimental research. Within computational sim-

ulation frameworks, the involved physics can be precisely
monitored, even down to a nanoseconds scale, which would
oftentimes be probhibitively expensive to do experimentally.
At the same time, a considerable drawback of this approach
is the additional amount of work that has to be put into the
mathematical modelling of the involved physics. Especially
within fluid dynamics, gaining a stable as well as accurate
solution can oftentimes be challenging, as the resulting set of
partial differential equations can have a small stability region
in the temporal domain [4].

Therefore in this work, we propose and demonstrate a
performant, free and open source software framework based on
the Finite Volume method that is able to capture complex, non-
isothermal surface flows. We discuss the necessary mathemati-
cal modelling in order to extend the existing solver ecosystem
towards incorporating non-isothermal surface tension driven
flows. We showcase the capabilities of the developed appli-
cation using two example cases with different geometric and
physical complexity.

II. RELATED WORKS

Modelling field-dependent capillary convection, also known
as Marangoni convection, in itself is not a new field of
research. Various works exist that address the need to develop
robust numerical methods in order to resolve the complex flow
patterns that arise. Those are mostly driven by application, i.e.
they are tailored towards simulating a particular set of physics.

Early works include the investigation of marangoni effects
in microgravity [5], [6], buoyancy-driven flows [7] and weld-
ing [8], [9].

After that, Marangoni convection in the microfluidic regime
has received increasing attention within the last ten years [10].
Numerous scenarios have been investigated since, including
engineering of traps and pumps, stability in microchannels and
particle accumulation in microfluidic flows [11]–[13]. More
recent works have also put a strong focus towards increasing
the performance of such models substantially [14].
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Another field where the effects of capillary convection
have become a dominant part of the involved physics is
within metal additive manufacturing. Here, the focus lays on
resolving temperature-dependent surface tension flows, as melt
pools exhibit large spatial and temporal temperature gradients
[2]. Various methods have been employed to resolve the
thermo-fluid dynamics on the powder scale including Arbitrary
Lagrangian Eulerian [15], [16], Finite Difference [17], Finite
Element [18]–[20], Lattice Boltzmann [21], Smoothed Particle
Hydrodynamics [22] and the Finite Volume Method which
shall be used for this work as well [23]–[25].

However, the mentioned works exhibit some shortcomings
when compared to the general current state of numerical
modelling. Especially in applications where highly dynamic
physics are strongly localized in the computational domain,
adaptively refining the domain is a very desirable property
that is not widely employed yet. Furthermore, the use of
high order spatial approximations remains largely restricted to
few numerical schemes of Galerkin type. However, achieving
high order accuracy can help alleviate the need for overly
fine computational meshes and hence is also desirable. Lastly,
few of the presented solution along with their source codes
are freely available. To the authors’ best knowledge, none of
the current works on the presented topic incorporate all three
properties. Thus, we present a framework that allows for grid
adaptivity, high order schemes and is openly available (see
section VI for references).

III. THEORY

To describe the underlying mathematical concepts, we will
use the index notation of tensors in a cartesian coordinate
system alongside with the Einstein summation convention
where the sum over matching indices is implied.

From here on, we assume a system of partial differential
equations that involves the transient evolution of multiple fluid
phases in a joint domain. This means we are tasked to solve at
least the Navier-Stokes equations in order to capture velocity,
pressure and temperature fields.

In addition, we need to properly discretize the different
phases in the model. One way to achieve this in a Finite
Volume framework is through the Volume-of-Fluid method
[26]:

∂αj

∂t
+

∂ui αj

∂xi
= 0 (1)

Where αj represents the j-th phase involved. From this,
we obtain a set of hyperbolic conservation laws that track the
cell-wise volumetric fraction of each phase over the domain.

After that, we can consider the effects happening at the
interface of such phases, i.e. within this work we investigate
surface tension. With no other physics involved, this leads to
a contractional movement normal to the interface. If however
varying fields, such as temperature are present that influence
the surface tension coefficient, additional forces interact with
the interface. This is shown in Fig. 1.

Fig. 1. Forces acting on an interface between two immiscible phases subject
to a temperature gradient ∆T = T2 −T1. The overall surface tension Force
Fσ can be divided into a normal component Fσn and a tangential component
Fσt in the coordinate system ξi proprietary to the interface. The tangential
component is also called Marangoni force and depends on the gradient of
external fields.

The theory of the proposed implementation of those surface
tension effects relies on the Continuum Surface Stress Method
initially presented by Lafaurie et al. [27], extending the works
on modelling surface tension with the Volume of Fluid Method
as described by Brackbill et al. [28]. Using this modelling
technique, it is possible to incorporate surface tension as a
generalized body force into the governing equations that is
well defined everywhere in the domain. This additional term
is then called the capillary stress which takes the form of a
stress tensor:

Tij = −σδs(δij − ninj) (2)

Where σ is the generally non constant coefficient of surface
tension. δs is the interface delta function that serves as an
indicator function of where the phase boundaries are located.
δij is the Kronecker Delta function and ni is the interface unit
normal vector. The concrete implementation of these abstract
quantities into the Volume of Fluid framework is given later
on. The local coordinate system of the interface needs to be
an orthogonal system in order to separate the purely geometry
based capillary force and the tangential Marangoni forces (c.f.
Fig. 1). The resulting force accounting for all surface tension
effects can now be expressed as the negative divergence of the
capillary stress tensor, yielding:

∂Tij

∂xj
=

∂σ

∂xj
[δs(δij − ninj)] +

∂δs
∂xj

[σ(δij − ninj)]

+ σδs
∂

∂xj
(δij − ninj) (3)

One can show that Eq. 3 can be re-arranged into a much
shorter and more useful form. The derivation is given in
more detail by Lafaurie et al. [27]. By performing those
rearrangements, we can recover a form that separates the
normal from the tangential components of the divergence
vector:

∂Tij

∂xj
=

∂σ

∂xi
[δs(δij − ninj)]− σκniδs (4)

Where we introduced the interface curvature κ. The sec-
ond term of the right hand side corresponds to the normal



capillary force (Fig. 1, Fσn) directed in the normal direction
of the interface, effecting a contractional movement of the
interface. The first term resembles the marangoni-type forces
(Fig. 1, Fσt) present. By taking the derivative of the surface
tension coefficient, this term does not vanish if and only if
spatial gradients exist at the interface. This is normally the
case when there are multiple species involved or temperature
gradients present [29]. Note that we otherwise simply evaluate
the ordinary form of surface tension without any additional
physics present. However, as the surface tension coefficient
is otherwise not a direct local variable, we must further
differentiate the term:

∂σ(c, T )

∂xj
=

∂σ(c, T )

∂T

∂T

∂xj
+

∂σ(c, T )

∂c

∂c

∂xj
(5)

Additionally, the delta function δs still needs to be dis-
cretized in a suitable manner in order to capture the physics
within the Finite Volume framework. This can be done using
the Volume of Fluid Method by taking the gradient of the
phase volume fraction α [26], [30]:

δs =

∣∣∣∣ ∂α∂xi

∣∣∣∣ (6)

The interface unit normal vector ni can be computed in
a similar manner by using the previously computed interface
function:

ni =
1

δs

∂α

∂xi
(7)

IV. IMPLEMENTATION

The presented theoretical foundation is modified and imple-
mented based on the open source library OpenFOAM, which is
a popular software library that implements the Finite Volume
Method [31]. The modifications rely on the works of Gueyffier
et al. in order to account for the additional Marangoni stresses
[30].

It is clear from equation 5 that we would normally have
to supply the derivatives of the surface tension coefficient
with respect to the respective fields and then compute the
gradients of the fields each. This can quickly become tedious
to implement as well to code when multiple sources of
Marangoni convection are considered. Therefore, we instead
first compute the surface tension coefficient locally and treat
it as a differentiable field itself. A very useful property of
this approach is that not only thermally driven surface tension
effects can be incorporated, but also gradients arising from any
kind of inhomogeneity. This means that, among others, solute-
driven effects can also be modelled. This scenario is common
in manufacturing processes involving mixing of multiple sol-
vents. Within the context of additive manufacturing, in-situ
alloying is a scenario where such effects are not negligible
[32].

In order to approximate the differential terms in the gov-
erning equations efficiently, we use high order weighted
essentially non-oscillatory (WENO) schemes that have been

TABLE I
MATERIAL PROPERTIES OF THE OSCILLATING DROPLET CASE [35]. THE
INDICES INDICATE EITHER A PROPERTY OF THE SURROUNDING MEDIUM

(1) OR OF THE DROPLET (2).

Quantity Value [Unit]

Density ρ1 250 kg
m3

Density ρ2 2ρ1

Heat capacity cp,1 5 · 10−5 J
kgK

Heat capacity cp,2 2cp,1

Viscosity µ1 0,012 kg
m s

Viscosity µ2 2µ1

Thermal conductivity λ1 1,2 · 10−6 W
mK

Thermal conductivity λ2 2λ1

Surface tension coefficient σ 0,1 N
m

Marangoni coefficient σT 0,02 N
mK

developed separately for OpenFOAM by Gärtner et al. [33],
[34]. In this implementation, the numeric stencil coefficients
to specified order are pre-computed and locally stored to
alleviate the harsh overhead in memory requirements. The
theory behind the derivation of high order WENO stencils is
given in Gärtner et al. [33].

V. NUMERICAL EXPERIMENTS

First, we replicate and examine the numerical setup pro-
posed by Ma and Bothe that models the flow around a
stationary bubble subject to a temperature gradient [35]. We
aim to accurately predict the velocity field that arises due to
marangoni convection at the interface.

We then proceed to investigate the mesoscopic nanosecond
dynamics during selective laser melting of steel, a common
problem within additive manufacturing. Here, we show that
our implementation is able to handle geometrically and phys-
ically complex simulations in 3D.

A. Marangoni Flow around a droplet

We now investigate the aforementioned simple, two-
dimensional benchmark case that illustrates the ability to
capture Marangoni effects for the present work. An overview
of the material parameters is given in table I.

We initialize the droplet in the center of a rectangular
domain of length 4a × 4a where a = 1,44 · 10−3 m with a
radius of a. The droplet is subject to a temperature gradient
of 200 K

m where the bottom temperature is fixed to 290K.
We discretize the domain using a coarse grid of 100 x

100 quadrilaterals. The spatial discretization of the divergence
is done using a mixture of first order bounded Gaussian
schemes and fourth order WENO schemes. We impose no-
slip boundary conditions at the walls as well as Neumann type
boundaries for the temperature at the left and right walls. The
temperature gradient is enforced during the entire simulation
using Dirichlet boundaries at the bottom and top. We simulate
the evolution of the involved fields up to t = 0,12 s.
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Fig. 2. Flow field around the droplet at final time t = 0,12 s. The resulting
velocity vector field (arrows) and temperature gradient field are shown on the
left slice of the domain. The right side shows the phase fraction of the droplet
as well as the spatial discretisation.

The remainder of the involved numerics and parameters, as
well as all boundary conditions can be accessed via the online
repository given in section VI.

The resulting fields at the final time step t = 0,12 s is shown
in Fig. 2. We can clearly observe the field of vortices that
form around the bubble, initiated from varying pressures along
the interface. This is due to the Marangoni effect, resulting
in an uneven pressure distribution in the domain. Following
equation 4, the first term involving the gradient of the surface
tension coefficient - i.e. the marangoni coefficient times the
gradient of the temperature field - does not vanish here and
hence induces a non homogeneous pressure contribution. The
resulting two large vortices drive the droplet to an upwards
motion in direction of increasing temperature gradient. The
observed fields reproduce the findings of Ma and Bothe closely
[35].

Despite the comparatively low mesh resolution, the phase
boundary is conserved reasonably well after solving for 6000
time steps. A comparison of the sharp interface between the
two phases at the beginning and end of the simulation is
given in Fig. 3. During the solution process, only minimal
numerical diffusion of the interface occurs, indicated by the
slightly tapered off edges of the rectangular profile at end time.
In addition, we don’t observe any oscillatory behaviour in the
fields which is essential for obtaining a stable solution.

B. Powderbed-scale physics during selective laser melting

We now turn to a more complex and relevant simulation
setup that appears regularly in additive manufacturing. We
aim to investigate the melting, solidification and evaporation
behavior of molten metal during the Laser Powder Bed Fusion
Process (PBF-LB/M).

This case shall serve as a showcase of a physically complex
problem that involves phase changes, simultaneous handling
of solid, liquid and gaseous phases (and hence strong pressure
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Fig. 3. Phase fraction profiles of the droplet at beginning and end of the
investigated temporal domain. This cross-section represents a diagonal slice
from the left top to the right bottom of the grid shown in Fig. 2.

Fig. 4. Composition of the computational domain at the initial time step.
Solidified build platform (red), discretised powder bed in solid state (green)
and gaseous argon atmosphere (blue). As reference, the individual cell
boundaries are marked with blue lines. The initial grid is finest where the
temperature gradients are expected to be highest.

gradients) as well as spatially and temporally localized heat
transfer.

The computational domain with the initial conditions for
the phase fractions is shown in Fig. 4. We create the packing
of the metallic powder particles using a rain drop model
implemented in the open source Discrete Element Method
software Yade [36]. Overall, the domain spans a cuboid
geometry of size 0,5mm × 0,3mm × 0,7mm and contains
roughly 800.000 hexahedral cells arranged in a cartesian grid.
The inhomogeneous temperature field is generated by a laser
heat source of diameter 50 µm that inputs an amount of heat
equivalent to 67 J

mm3 .
The physical parameters of the PBF-LB/M model are given

in table II. The numerical parameters are given in the case



TABLE II
SELECTION OF RELEVANT SIMULATIN PARAMETERS OF THE LASER

POWDER BED FUSION TEST CASE. THE SUBSCRIPTS L, S AND G SIGNIFY
THE LIQUID, SOLID AND GASEOUS PHASES OF 316L STAINLESS STEEL

INVOLVED IN THE MODEL. [37], [38]

Symbol Value [Unit]

Laser Power 300W

Laser scan speed 0,9 m
s

Density ρs 7950 kg
m3

Heat capacity cp,s 412 J
kgK

Thermal conductivity λs 1,2 · 10−6 W
mK

Enthalpy of fusion Hf 2,6 · 105 J
kg

Density ρl 6881 kg
m3

Heat capacity cp,l 790 J
kgK

Viscosity µl 5,85 · 10−3 kg
m s2

Thermal conductivity λl 6,6 W
mK

Heat capacity cp,g 1900 J
kgK

Viscosity µg 1,8 · 10−5 kg
m s2

Thermal conductivity λg 6,6 W
mK

Surface tension coefficient σ 1,908 N
m

Marangoni coefficient σT −1,622 · 10−5 N
mK

298.0 

2818. 

500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700

T
em

p
er

at
u

re
 [

K
]

Fig. 5. Temperature field of the investigated Laser Powder Bed Fusion pro-
cess. The velocity field of the melt pool is indicated by arrows. Additionally,
the discretised powder bed is shown along with the computational grid as a
reference.

files referenced in section VI.
In Fig. 5, we can observe the complex flow field that

evolves within the molten material. The melt region largely
penetrates the already solidified material below the powder
bed, which agrees well with experimental observations done
on laser melting of 316L stainless steel [39]. Examining the
cross-section further, we observe high flow velocities at the
surface of the molten material, indicated by arrows in Fig.
5. The large spatial temperature gradients produce variations
in surface tension and hence lead to Marangoni convection
at the surface. This current of liquid metal helps to distribute
the heat that is input by the laser over the entire melt pool.
Furthermore, we can examine a small eddy forming within the
melt pool, indicated by the circularly arranged arrows in Fig.

5. This is also to be expected, albeit not due to Marangoni
convection, and assists the homogenization of the temperature
field within the melt pool.

VI. SUMMARY AND FUTURE WORK

In this work, we proposed a numerical solver based on
the Finite Volume method that is able to incorporate various
physics that are relevant for modelling non-isothermal surface
flows of arbitrary many phases. We demonstrated the capabili-
ties of the framework using one simple, two-dimensional case
showing the effects of marangoni convection and subsequently
with a considerably more complex and application-driven pro-
cess modelling a scenario common in additive manufacturing.

We expect that the results of this work will help to improve
understanding of the complex physics of non-isothermal sur-
face tension driven flows. Furthermore, the high fidelity data
that can be generated using the proposed solver can be used in
order to train physics informed machine learning models [40].
It has previously been shown that such models can speed up
simulations by order of magnitudes by execution of a simple
forward pass. However, accurate and rich training data are
needed in order to train such models [41], [42]. We anticipate
that this work can help supply this data and further enhance
the field of modelling for complex manufacturing processes, as
experimental data for the applications and regimes discussed
are not easy to generate.

Further means of extending the proposed framework in-
clude the incorporation of ray tracing algorithms in order to
accurately predict heat source dynamics, further tweaking of
the underlying volume of fluid formulation for robustness and
accuracy and improving parallel solving capabilities on spe-
cialized hardware, such as General Purpose GPU architectures
(GPGPU).
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