3,115 research outputs found
XPS and AFM study of interaction of organosilane and sizing with e-glass fibre surface
Organosilanes are often used in commercial sizings for glass fibres to provide wettability with the resin and promote strong interfacial adhesion to the matrix in a fibre reinforced polymer composite. The silane treatment is introduced as part of a complex deposition from an aqueous emulsion immediately at the spinaret and determines the optimum properties of the cured composite. To understand the interaction of organosilanes contained in sizings for glass surfaces, XPS was used to investigate the adsorption of Îł-aminopropyltriethoxysilane (APS) from a simple sizing system containing a polyurethane (PU) film former. It has been found that both APS and the sizing (containing APS and PU) deposits on E-glass fibre surfaces contained components of differing hydrolytic stability. The differences observed in the AFM images of APS coated E-glass fibres before and after water extraction also confirmed that the APS deposit contained components with different water solubility
The Density of States and the Spectral Shift Density of Random Schroedinger Operators
In this article we continue our analysis of Schroedinger operators with a
random potential using scattering theory. In particular the theory of Krein's
spectral shift function leads to an alternative construction of the density of
states in arbitrary dimensions. For arbitrary dimension we show existence of
the spectral shift density, which is defined as the bulk limit of the spectral
shift function per unit interaction volume. This density equals the difference
of the density of states for the free and the interaction theory. This extends
the results previously obtained by the authors in one dimension. Also we
consider the case where the interaction is concentrated near a hyperplane.Comment: 1 figur
Low density expansion for Lyapunov exponents
In some quasi-one-dimensional weakly disordered media, impurities are large
and rare rather than small and dense. For an Anderson model with a low density
of strong impurities, a perturbation theory in the impurity density is
developed for the Lyapunov exponent and the density of states. The Lyapunov
exponent grows linearly with the density. Anomalies of the Kappus-Wegner type
appear for all rational quasi-momenta even in lowest order perturbation theory
Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001
Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (~0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA)
A High Resolution Microprobe Study of EETA79001 Lithology C
Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations
Computing the local pressure in molecular dynamics simulations
Computer simulations of inhomogeneous soft matter systems often require
accurate methods for computing the local pressure. We present a simple
derivation, based on the virial relation, of two equivalent expressions for the
local (atomistic) pressure in a molecular dynamics simulation. One of these
expressions, previously derived by other authors via a different route,
involves summation over interactions between particles within the region of
interest; the other involves summation over interactions across the boundary of
the region of interest. We illustrate our derivation using simulations of a
simple osmotic system; both expressions produce accurate results even when the
region of interest over which the pressure is measured is very small.Comment: 11 pages, 4 figure
Quantum field theory on quantum graphs and application to their conductance
We construct a bosonic quantum field on a general quantum graph. Consistency
of the construction leads to the calculation of the total scattering matrix of
the graph. This matrix is equivalent to the one already proposed using
generalized star product approach. We give several examples and show how they
generalize some of the scattering matrices computed in the mathematical or
condensed matter physics litterature.
Then, we apply the construction for the calculation of the conductance of
graphs, within a small distance approximation. The consistency of the
approximation is proved by direct comparison with the exact calculation for the
`tadpole' graph.Comment: 32 pages; misprints in tree graph corrected; proofs of consistency
and unitarity adde
- …