2,947 research outputs found

    Two-particle scattering theory for anyons

    Get PDF
    We consider potential scattering theory of a nonrelativistic quantum mechanical 2-particle system in R^2 with anyon statistics. Sufficient conditions are given which guarantee the existence of wave operators and the unitarity of the S-matrix. As examples the rotationally invariant potential well and the delta-function potential are discussed in detail. In case of a general rotationally invariant potential the angular momentum decomposition leads to a theory of Jost functions. The anyon statistics parameter gives rise to an interpolation for angular momenta analogous to the Regge trajectories for complex angular momenta. Levinson's theorem is adapted to the present context. In particular we find that in case of a zero energy resonance the statistics parameter can be determined from the scattering phase.Comment: 42 pages of RevTex and 5 figures (included

    Stabilization not for certain and the usefulness of bounds

    Get PDF
    Stabilization is still a somewhat controversial issue concerning its very existence and also the precise conditions for its occurrence. The key quantity to settle these questions is the ionization probability, for which hitherto no computational method exists which is entirely agreed upon. It is therefore very useful to provide various consistency criteria which have to be satisfied by this quantity, whose discussion is the main objective of this contribution. We show how the scaling behaviour of the space leads to a symmetry in the ionization probability, which can be exploited in the mentioned sense. Furthermore, we discuss how upper and lower bounds may be used for the same purpose. Rather than concentrating on particular analytical expressions we obtained elsewhere for these bounds, we focus in our discussion on the general principles of this method. We illustrate the precise working of this procedure, its advantages, shortcomings and range of applicability. We show that besides constraining possible values for the ionization probability these bounds, like the scaling behaviour, also lead to definite statements concerning the physical outcome. The pulse shape properties which have to be satitisfied for the existence of asymptotical stabilization is the vanishing of the total classical momentum transfer and the total classical displacement and not smoothly switched on and off pulses. Alternatively we support our results by general considerations in the Gordon-Volkov perturbation theory and explicit studies of various pulse shapes and potentials including in particular the Coulomb- and the delta potential.Comment: 12 pages Late

    California Cooperative Fisheries Investigations. Hydrographic data report. Monterey Bay. July to December, 1974

    Get PDF
    In July 1974 Moss Landing Marine Laboratories began the continuation of the bi-weekly hydrographic observations in Monterey Bay. From 1951 to this date, these stations were sampled by personnel at Hopkins Marine Station in Pacific Grove. Small changes were made in the sampling routine: 1) to facilitate squid (Loligo opa1escens) studies, our observations were made at night, and 2) stations 1125 and 1154 are sampled in addition to five stations originally used by Hopkins Marine Station (2201, 2202, 2203, 2204, and 2205). These additional stations will provide important data of the nearshore environment. PDF contains 86 pages

    Relativistic coupled-cluster single-double calculations of positron-atom bound states

    Get PDF
    Relativistic coupled-cluster single-double approximation is used to calculate positron-atom bound states. The method is tested on closed-shell atoms such as Be, Mg, Ca, Zn, Cd, and Hg where a number of accurate calculations is available. It is then used to calculate positron binding energies for a range of open-shell transition metal atoms from Sc to Cu, from Y to Pd, and from Lu to Pt. These systems possess Feshbach resonances, which can be used to search for positron-atom binding experimentally through resonant annihilation or scattering.Comment: submitted to Phys. Rev.

    Positronic lithium, an electronically stable Li-e+^+ ground state

    Get PDF
    Calculations of the positron-Li system were performed using the Stochastic Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0 ground state. Unlike previous calculations of this system, the system was found to be stable against dissociation into the Ps + Li+^+ channel with a binding energy of 0.00217 Hartree and is therefore electronically stable. This is the first instance of a rigorous calculation predicting that it is possible to combine a positron with a neutral atom and form an electronically stable bound state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let

    Grassmann-Gaussian integrals and generalized star products

    Full text link
    In quantum scattering on networks there is a non-linear composition rule for on-shell scattering matrices which serves as a replacement for the multiplicative rule of transfer matrices valid in other physical contexts. In this article, we show how this composition rule is obtained using Berezin integration theory with Grassmann variables.Comment: 14 pages, 2 figures. In memory of Al.B. Zamolodichiko
    • …
    corecore