803 research outputs found

    Do Stack Traces Help Developers Fix Bugs?

    Get PDF
    A widely shared belief in the software engineering community is that stack traces are much sought after by developers to support them in debugging. But limited empirical evidence is available to confirm the value of stack traces to developers. In this paper, we seek to provide such evidence by conducting an empirical study on the usage of stack traces by developers from the ECLIPSE project. Our results provide strong evidence to this effect and also throws light on some of the patterns in bug fixing using stack traces. We expect the findings of our study to further emphasize the importance of adding stack traces to bug reports and that in the future, software vendors will provide more support in their products to help general users make such information available when filing bug reports

    Capturing regional differences in flood vulnerability improves flood loss estimation

    Get PDF
    Flood vulnerability is quantified by loss models which are developed using either empirical or synthetic approaches. In reality, processes influencing flood risk are stochastic and loss predictions bear significant uncertainty, especially due to differences in vulnerability across exposed objects and regions. However, many state-of-the-art flood loss models are deterministic, i.e., they do not account for data and model uncertainty. The Bayesian Data-Driven Synthetic (BDDS) model was one of the first approaches that used empirical data to reduce the prediction errors at object-level and enhance the reliability of synthetic flood loss models. However, the BDDS model does not account for regional differences in vulnerability which may result in over-/under-estimation of losses in some regions. In order to overcome this limitation, this study introduces a hierarchical parameterization of the BDDS model which enhances synthetic flood loss model predictions by quantifying regional differences in vulnerability. The hierarchical parameterization makes optimal use of the process information contained in the overall data set for the various regional applications, so that it is particularly suitable for cases in which only a small amount of empirical data is available. The implementation and performance of the hierarchical parametrization is demonstrated with the Multi-Colored Manual (MCM) loss functions and empirical damage dataset from the UK consisting of residential buildings from the regions Appleby, Carlisle, Kendal and Cockermouth that suffered losses during the 2015 flood event. The developed model improves prediction accuracy of flood loss compared to MCM by reducing the absolute error and bias by at least 23 and 90%, respectively. The model reliability in terms of hit rate (i.e., the probability that the observed value lies in the 90% high density interval of predictions) is 88% for residential buildings from the same regions used for calibration and 73% for residential buildings from new regions. The approach is of high practical relevance for all regions where only limited amounts of empirical flood loss data is available

    Tailoring the frictional properties of granular media

    Full text link
    A method of modifying the roughness of soda-lime glass spheres is presented, with the purpose of tuning inter-particle friction. The effect of chemical etching on the surface topography and the bulk frictional properties of grains is systematically investigated. The surface roughness of the grains is measured using white light interferometry and characterised by the lateral and vertical roughness length scales. The underwater angle of repose is measured to characterise the bulk frictional behaviour. We observe that the co-efficient of friction depends on the vertical roughness length scale. We also demonstrate a bulk surface roughness measurement using a carbonated soft drink.Comment: 10 pages, 17 figures, submitted to Phys. Rev.

    An invariant distribution in static granular media

    Full text link
    We have discovered an invariant distribution for local packing configurations in static granular media. This distribution holds in experiments for packing fractions covering most of the range from random loose packed to random close packed, for beads packed both in air and in water. Assuming only that there exist elementary cells in which the system volume is subdivided, we derive from statistical mechanics a distribution that is in accord with the observations. This universal distribution function for granular media is analogous to the Maxwell-Boltzmann distribution for molecular gasses.Comment: 4 pages 3 figure

    Theoretical study of topological properties of ferromagnetic pyrite CoS<sub>2</sub>

    Get PDF
    Since the discovery of the first topological material 15 years ago, the search for material realizations of novel topological phases has become the driving force of the field. While oftentimes we search for new materials, we forget that well established materials can also display very interesting topological properties. In this work, we revisit CoS2, a metallic ferromagnetic pyrite that has been extensively studied in the literature due to its magnetic properties. We study the topological features of its electronic band structure and identify Weyl nodes and nodal lines, as well as a symmetry-protected fourfold fermion close to the Fermi level. Looking at different surface cleavage planes, we observe both spin polarized Fermi arcs in the majority channel and drumhead states. These findings suggest that CoS2 is a promising platform to study topological phenomena, as well as a good candidate for spintronic applications

    Contribution of the nucleon-hyperon reaction channels to K−^- production in proton-nucleus collisions

    Full text link
    The cross sections for producing K−^- mesons in nucleon-hyperon elementary processes are estimated assuming one-pion exchange and using the experimentally known pion-hyperon cross sections. The results are implemented in a transport model which is applied to calculation of proton-nucleus collisions. In significant difference to earlier estimates for heavy-ion collisions the inclusion of the nucleon-hyperon cross section roughly doubles the K−^- production in near-threshold proton-nucleus collisions
    • …
    corecore