10,975 research outputs found

    Nature and strength of bonding in a crystal of semiconducting nanotubes: van der Waals density functional calculations and analytical results

    Get PDF
    The dispersive interaction between nanotubes is investigated through ab initio theory calculations and in an analytical approximation. A van der Waals density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)] is used to determine and compare the binding of a pair of nanotubes as well as in a nanotube crystal. To analyze the interaction and determine the importance of morphology, we furthermore compare results of our ab initio calculations with a simple analytical result that we obtain for a pair of well-separated nanotubes. In contrast to traditional density functional theory calculations, the vdW-DF study predicts an intertube vdW bonding with a strength that is consistent with recent observations for the interlayer binding in graphitics. It also produce a nanotube wall-to-wall separation which is in very good agreement with experiments. Moreover, we find that the vdW-DF result for the nanotube-crystal binding energy can be approximated by a sum of nanotube-pair interactions when these are calculated in vdW-DF. This observation suggests a framework for an efficient implementation of quantum-physical modeling of the CNT bundling in more general nanotube bundles, including nanotube yarn and rope structures.Comment: 10 pages, 4 figure

    Geometric, Variational Integrators for Computer Animation

    Get PDF
    We present a general-purpose numerical scheme for time integration of Lagrangian dynamical systems—an important computational tool at the core of most physics-based animation techniques. Several features make this particular time integrator highly desirable for computer animation: it numerically preserves important invariants, such as linear and angular momenta; the symplectic nature of the integrator also guarantees a correct energy behavior, even when dissipation and external forces are added; holonomic constraints can also be enforced quite simply; finally, our simple methodology allows for the design of high-order accurate schemes if needed. Two key properties set the method apart from earlier approaches. First, the nonlinear equations that must be solved during an update step are replaced by a minimization of a novel functional, speeding up time stepping by more than a factor of two in practice. Second, the formulation introduces additional variables that provide key flexibility in the implementation of the method. These properties are achieved using a discrete form of a general variational principle called the Pontryagin-Hamilton principle, expressing time integration in a geometric manner. We demonstrate the applicability of our integrators to the simulation of non-linear elasticity with implementation details

    Recurrent proofs of the irrationality of certain trigonometric values

    Full text link
    We use recurrences of integrals to give new and elementary proofs of the irrationality of pi, tan(r) for all nonzero rational r, and cos(r) for all nonzero rational r^2. Immediate consequences to other values of the elementary transcendental functions are also discussed

    Pomelo, a tool for computing Generic Set Voronoi Diagrams of Aspherical Particles of Arbitrary Shape

    Full text link
    We describe the development of a new software tool, called "Pomelo", for the calculation of Set Voronoi diagrams. Voronoi diagrams are a spatial partition of the space around the particles into separate Voronoi cells, e.g. applicable to granular materials. A generalization of the conventional Voronoi diagram for points or monodisperse spheres is the Set Voronoi diagram, also known as navigational map or tessellation by zone of influence. In this construction, a Set Voronoi cell contains the volume that is closer to the surface of one particle than to the surface of any other particle. This is required for aspherical or polydisperse systems. Pomelo is designed to be easy to use and as generic as possible. It directly supports common particle shapes and offers a generic mode, which allows to deal with any type of particles that can be described mathematically. Pomelo can create output in different standard formats, which allows direct visualization and further processing. Finally, we describe three applications of the Set Voronoi code in granular and soft matter physics, namely the problem of packings of ellipsoidal particles with varying degrees of particle-particle friction, mechanical stable packings of tetrahedra and a model for liquid crystal systems of particles with shapes reminiscent of pearsComment: 4 pages, 9 figures, Submitted to Powders and Grains 201

    Van der Waals Density Functional for General Geometries

    Full text link
    A scheme within density functional theory is proposed that provides a practical way to generalize to unrestricted geometries the method applied with some success to layered geometries [H. Rydberg, et al., Phys. Rev. Lett. 91, 126402 (2003)]. It includes van der Waals forces in a seamless fashion. By expansion to second order in a carefully chosen quantity contained in the long range part of the correlation functional, the nonlocal correlations are expressed in terms of a density-density interaction formula. It contains a relatively simple parametrized kernel, with parameters determined by the local density and its gradient. The proposed functional is applied to rare gas and benzene dimers, where it is shown to give a realistic description.Comment: 4 pages, 4 figure

    Storage of correlated patterns in a perceptron

    Full text link
    We calculate the storage capacity of a perceptron for correlated gaussian patterns. We find that the storage capacity αc\alpha_c can be less than 2 if similar patterns are mapped onto different outputs and vice versa. As long as the patterns are in general position we obtain, in contrast to previous works, that αc≥1\alpha_c \geq 1 in agreement with Cover's theorem. Numerical simulations confirm the results.Comment: 9 pages LaTeX ioplppt style, figures included using eps

    Remarks on Bodenmillers theorem

    Get PDF

    Metamagnetic phase transition of the antiferromagnetic Heisenberg icosahedron

    Full text link
    The observation of hysteresis effects in single molecule magnets like Mn12_{12}-acetate has initiated ideas of future applications in storage technology. The appearance of a hysteresis loop in such compounds is an outcome of their magnetic anisotropy. In this Letter we report that magnetic hysteresis occurs in a spin system without any anisotropy, specifically, where spins mounted on the vertices of an icosahedron are coupled by antiferromagnetic isotropic nearest-neighbor Heisenberg interaction giving rise to geometric frustration. At T=0 this system undergoes a first order metamagnetic phase transition at a critical field \Bcrit between two distinct families of ground state configurations. The metastable phase of the system is characterized by a temperature and field dependent survival probability distribution.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Learning and predicting time series by neural networks

    Full text link
    Artificial neural networks which are trained on a time series are supposed to achieve two abilities: firstly to predict the series many time steps ahead and secondly to learn the rule which has produced the series. It is shown that prediction and learning are not necessarily related to each other. Chaotic sequences can be learned but not predicted while quasiperiodic sequences can be well predicted but not learned.Comment: 5 page
    • …
    corecore