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REMARKS ON BODENMILLER'S THEOREM 

Oswald Giering zum 60. Geburtstag gewidmet 

Rudolf Fritsch 

The original version of BODENMILLER'S Theorem states that the three circles with the diagonals 
of a complete quadrilateral as diameters intersect in the same two points. We provide a simple 
analytic proof of this fact which yields a much more general result. Furthermore we discuss some 
special configurations appearing in this context. 

The historical background and the classical proofs of BODENMILLER's theorem using the 

standard theorems of synthetic geometry (theorems of APOLLONIUS, MENELAUS, MONGE 

and GAuss, Theorem of the Complete Quadrilateral) are described in [2] while an approach 

via descriptive geometry has been given by G. WEISS [7]. Here we treat the subject analyt- 

ically. 
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Let V be a vector space over a field K with char K # 2 and let a non-degenerate,  symmetr ic  

bilinear form 

< , > : V x V - - - - - ~ K ,  ( x , y )  H < ~ , y > = ~ . y  

be given. The form < ,  > determines a set of afflne quadrics in V: For each m E V and 

c E K we have the set 

Q =Qm,c= { ~  Vl~-2m.~+c=0} 

which is called an sphere if it  contains at least two elements. The point  1 m is called the 

center of Q and the value of the function 

P = Pm,c: V - - ~  K ,  z~--~ x 2 - 2 m . z  + c  

at place x 6 V is the power of x with respect to Q; thus, a sphere is the zero set of its power 

function. We denote by Q the set of the spheres determined by the fixed form < ,  >.  

In case K = IR, the field of reals (or more generally, if K is an ordered field in which every 

posit ive element is a square), and V : K s we have central conics. The following special 

cases are worthy of note: 

�9 If < ,  > is the s tandard scalar product,  Q contains circles only. This s i tuat ion yields 

the original version of BODENMILLER's theorem. 

�9 If < ,  > is a (positive or negative) definite form, Q consists of similar ellipses with 

parallel  axes 2. The corresponding generalization of BODENMILLER's theorem is due to 

C. GUDERMANN. 

�9 If < ,  > is an indefinite form 3, Q is a set of hyperbolas with parallel  asymptotes .  The 

validity of BODENMILLER's theorem for these spheres has been noted by G.  PICKERT. 

We return to the general si tuation. A 2-set (=  unordered pair) {u, v} of points in V is called 

a diameter of the  sphere Q 6 Q with center m if both points belong to the sphere and m 

is their  midpoint ,  ie 4, 
1 

m = ~ (u  + v ) .  

The basis for any version of BODENMILLER's theorem lies in the following fact. 

1If there is no danger of misunderstanding we use the notions "vector" and "point" synonymously, 

2Compare the definition of a metric by an ellipse in PICKERT [5, Section 5.1]. 
3That is the pseudoeuclidean case in the terminology of LENZ [4, p. 317]; see also the discussion "metric 

by a hyperbola" in PICKERT [5, Section 5.2]. 
4Here the assumption on the characteristic of the ground field becomes essential. 
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P R O P O S I T I O N  1. For any 2-set { u , v )  C V with u ~ v there is exactly one sphere 

Q 6 Q with {u, v} as a diameter of Q, namely, 

Q ~ , .  = { -  e v I ( -  - u ) .  ( .  - ~ )  = 0 } .  

P r o o f .  Let Qm,r a sphere with {u, v} as diameter. From 2 m = u + v we obtain 

Pmx(x)  = x ~ - 2 r n . x + c  = 

= ~ - ( u + v ) . x + c =  

= (,~ - , , )  �9 (,~ - , , )  - , ,  . , ,  + c .  

Therefore 

Pm,c(u) = 0 r c = u . v 

and thus, Qu,v is the unique sphere with the 2-set { u , v }  as a diameter. [] 

We call Qu,v the sphere over the 2-set {u, v).  In the sequel we write Pu,v instead of Pm,~ 

for the power function of the sphere Qu,v; it takes the form 

~(~-u) . (~ -v )  =x~-(,,+v)-~+~,.,,. 

Next, we have to consider quadrilaterals. A (complete) quadrilateral in V is a set of four 

lines (=  one-dimensional affine subspaces of V) such that every two intersect but no three 

are concurrent s. Since up to now we have no restriction on d imV,  it is worthwhile to note 

that  any complete quadrilateral is contained in an affine subplane of V. To see this, observe 

that  two of the four lines determine an affine plane since they intersect and, since each of the 

other two lines has two points in common with this plane, the quadrilateral lies completely 

therein. 

The lines constituting a quadrilateral are called sides of the quadrilateral while the intersec- 

tion of two sides is called a vertex. Each vertex is opposite to a (unique) second one (if both 

are not joined by a side) resulting in three such pairs for each quadrilateral. These 2-sets 

constitute the diagonals of the quadrilateral. We specialize this general theory by naming 

the spheres over the diagonals BODENMILLER spheres of the quadrilateral. 

In order to that  the statement of the generalized BODENMILLER theorem, to follow, will be 

crystal clear, we recall the behaviour of spheres in Q under intersection. To this end let 

~Here we adapt the definition in [1, p. 231] for projective planes to our affine situation 
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two spheres Q1, Q2 c Q be given with different centers m l ,  rn2 and let/91,/92 denote their 

respective power functions. Then the intersection Q1 fq Q2 is contained in the zero set of 

the function P1 - P2. The latter set, called the radical axis of Q1, (~2 [1, p. 86], is an affine 

hyperplane of V since the form < ,  > is assumed to be non-degenerate. Furthermore,  this 

set is orthogonal to the line connecting the centers m l ,  rn2 (with respect to the form < ,  >)  

and is the locus of points of equal power with respect to the two spheres. 

At this point, we examine two special cases which fall out of the original s ta tement  of Bo-  

DENMILLER's theorem. Firstly, the BODENMILLER circles of a quadrilateral may touch each 

other in just one point (with the common tangent as radical axis of each pair of BODEN- 

MILLER circles); secondly, they may be pairwise disjoint (see [2]). For these cases, the notion 

of that  the two circles "intersect in the same two points" may dealt with purely algebraically 

by counting zeros of multiplicity 2 twice and of allowing complex roots of the associated 

quadratic equations. Another possibility is to separate the claim in different cases: 

�9 the BODENMILLER circles intersect in the same two points; 

�9 if two BODENMILLER circles are tangent then all three are tangent at the same point; 

�9 if two BODENMILLER circles are disjoint, then all three are pairwise disjoint. 

The latter could be summarized as "the intersection of all three BODENMILLER circles of a 

quadrilateral is equal to the intersection of any two of them" which is evidently a weaker 

s ta tement  than the former. This difficulty could be resolved by establishing the claim 

the three radical axes coincide 

or, equivalently, 

the power functions of the three BODENMILLER circles of a quadrilateral are linearly 

dependent in the vector space of all functions V ~ K.  

Both of the previously stated BODENMILLER's theorems would then be immediate  conse- 

quences of this assertion. 

We have now laid the necessary background for the statement of the main theorem. 

T H E O R E M  2. The three radical axes formed by the BODENMILLER spheres of a quadri- 

lateral, taken pairwise, coincide. 

For the proof we may assume one vertex of the quadrilateral being the origin O of V and 

consider the diagonal {a, c} as forming a linearly independent set of vectors in V. Then we 
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have scalars r, s 6 K with r, s # 0, r, s, r s  # 1 such that {r a ,  s e }  is another diagonal and 

we can compute the vertex b opposite to O obtaining 

r s  - -  r r s  - -  s 
b =  l a +  e .  

r s  - r s  - 1 

This gives for the power functions of the BODENMILLER spheres 

( r s  - 1 ) P o ,  b =- r s P a , e  - Pra , ,e  

showing their linear dependence and thus, the theorem. [] 

The given statement of this theorem also takes into account the fact that  hyperbolas might 

degenerate to intersecting pairs of lines and that the intersection of two such degenerate 

hyperbolas might be a complete line. We provide an example. Take K = JR, V = ]1% ~ and 

for all ~e = (xl, x2), y = (Yl, y2) 6 V. Consider a quadrilateral comprised of the axes and 

the lines determined by the equations 

xl + 252 = 1 

2xl + xz = 1. 

The BODENMILLER conics of this quadrilateral are now the degenerate hyperbolas given by 

the equations 

1 
(51 - x~)(xl + x ~ -  5) = 0 

1 
(z~ - 5 ~ ) ( 5 ,  + z~ - ~ )  = o 

( X l  - -  X 2 ) ( 5 1  ' - ~  ~C 2 - -  1) = 0 

whose intersection is the diagonal {(x, 5) 6 V I x 6 IR}, the radical axis of each pair of them. 

The main theorem enables us to define the rad ica l  ax is  o f  a c o m p l e t e  q u a d r i l a t e r a l  as the 

radical axis of two of its BODENMILLER spheres. Under the assumptions of the proof of the 

main theorem, it has the equation 

[(r - 1)a + (s - 1)c] �9 x = (rs - 1 )a .  e .  

In what follows we restrict our attention to the case with dim V = 2 so that  the spheres are 

central conics and the radical axis of a quadrilateral is a line. By our definition this line is 
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the locus of all points having the same power with respect to the three Bodemniller circles 

of the quadrilateral. But it can be also seen as a locus fi'om another point of view which we 

are going to describe in the sequel. For the presentation, we recall the notion of orthogonal 

affinity with axis g ; that  is a mapping A : V --~ V satisfying the following properties 

1. the points of the line g are fixed; 

2. collinear points are mapped on collinear points; 

3. the vector A(c) - c is orthogonal to the line 9, for any point e E V. 

Thus, an orthogonal affinity is a either a central collineation (with centre on the line at 

infinity) or an orthogonal projection of V onto a line in V. The mapping A is determined 

by the axis g and the image A(e) of one point e ~ 9. An explicit description of A, needed 

later, is obtained by assuming the origin to lie on the axis g and considering a further point 

a 6 9. If, in addition, we set n = A(e) - e, then the vectors a, e form a basis of V and 

A ( x . a  + y . c )  = x . a  + y . ( e  + n) 

for all x, y E K. 

The property of the radical axis of a quadrilateral referred to above may now be stated as 

follows. 

T H E O R E M  3. Let g be a side of a complete quadrilateral and let b, e, d denote the vertices 

of the triangle formed by the remaining sides; further let A be an orthogonal affinity with 

axis g. Then the perpendiculars from the images A(b), A(e), A(d) to the corresponding sides 

of the quadrilateral concur at a point of the radical axis (see figure). By a suitable choice of 

A, every point on the radical axis of the quadrilateral can be obtained in this way. 

Before proving this theorem we mention some special cases. If A is the identity mapping on 

V then the theorem tells that the orthocentres of the triangles obtained by removing just 

one side of the quadrilateral belong to the radical axis. The fact that these orthocentres 

are collinear has already been noted by J. STEINER [2]. At the other extreme end, if A is 

the orthogonal projection of V onto g then the point obtained is called the orthopole of 9 

with respect to the triangle b, e, d. It is known that the four resulting orthopoles and the 

named orthocentres are collinear, see R. GOORMATICH [3], consequently, the radical axis of 

the quadrilateral is also referred to as the eight-point-line of the quadrilateral [6, page 83]. 

Note that  the orthocentre of a triangle always exists while there is no orthopole of a line if 

the line is isotropic. 
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For the proof we describe the vertices of the quadrilateral by vectors as in the proof of the 

main theorem. We choose g as the side consisting of the scalar multiples of a,  then b, c and 

d = 8. e are the vertices of the triangle to consider. Since we already have A ( c )  - c = n we 

easily compute the quantities 

r 8  - -  S 

A ( b )  = b + - -  . n 
r 8  - -  1 

A ( d )  = 8 . ( c + n ) .  

Now the perpendiculars through the points A(b), A(c), A ( d )  to the corresponding sides of 

the triangle b, c, d are the zero sets of the linear functions 

Lb(a~ ) = c .  ( ~ -  A ( b ) ) ,  

Lc(a~) = ( s c -  a ) .  (a~- A(c)),  

Ld(ae ) = ( r a  - c) .  (a~- A ( d ) ) .  

The relation (rs - 1) �9 L b = r .  L e  + L d shows that these lines concur and, since the radical 

axis of the quadrilateral is the zero set of the function Lc + L d,  the point of concurrence 

belongs to the radical axis. 

It remains to show that each point of the radical axis is obtained in this way, which in turn, 

requires a solution n for the system 

a . n  = 0 

( s c - - a ) . ( x - - c - - , ~ )  = 0 

of equations, given a point x of the radical axis. Since the given bilinear form is non- 

degenerate by hypothesis, such a solution exists and is uniquely determined. 
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Finally we specialize to the real case with the standard scalar product where the question 

arises as to the classification of the complete quadrilaterals with respect to how the BODEN- 

MILLER circles are related with respect to intersection. We offer some preliminary results 

concerning some conditions for the appearance of tangent BODENMILLER circles. 

An immediate case occurs when two diagonals of the quadrilateral are parallel which causes 

the centers of all BODENMILLER circles to lie on a line incident with the third diagonal. 

This implies that the touching point also lies on this diagonal and so it must be one of 

the vertices on the line. It now follows from the famous theorem on the angle in the half 

circle - sometimes attributed to THALES of Milete - that the sides of the quadrilateral which 

intersect at this vertex must be perpendicular to each other. 

To obtain a more general situation for tangent circles, we may start with any such pair with 

different centers. Next, we choose a diameter {ul,  Vl} of one circle and a diameter {u2, v2} 

of the other such that neither the connecting lines of u l ,  u2 and vl, v2 nor the connecting 

lines of ul ,  v2 and v~, u2 are parallel. These four named lines now form a quadrilateral with 

touching BODENMILLER circles. 

This construction can still be generalized somewhat. We start with one circle and a vector 

m2, different from the center, and look for a second circle with center m2 tangent to the 

first chosen circle. There are two possibilities: if m2 belongs to the first circle, then there is 

just one choice for the second circle; otherwise there are two. This situation is algebraically 

treated in the appendix of [2]. 

In [2], one also finds a discussion of the case where one fixes the vectors O, a,  c and the 

scalar s, see the proof of the main theorem. To find a scalar r such that a quadrilateral with 

touching BODENMILLER circles is obtained is equivalent to the construction of the midpoint 

m3 of {r a,  s e}. This is, in turn, an intersection point of 

1. the line parallel to the line connecting O, a through �89 + s c) and 

2. the hyperbola, the locus of the points whose distances from l ( a  + c), s c have the 

difference �89 - c). 

To achieve a quadrilateral with such tangent BODENMILLER circles would seem to be a nice 

exercise for a ruler and compass construction. 

At this point we leave a further treatment open for future research and, in closing, thank 

G. Pickert for a fruitful correspondence on the subject, R. Eddy for a careful reading and 

correction of the manuscript. 
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