41 research outputs found
Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology
As large--distance rays (say, 10\,-\,) approach the solar surface
approximately vertically, travel times measured from surface pairs for these
large separations are mostly sensitive to vertical flows, at least for shallow
flows within a few Mm of the solar surface. All previous analyses of
supergranulation have used smaller separations and have been hampered by the
difficulty of separating the horizontal and vertical flow components. We find
that the large separation travel times associated with supergranulation cannot
be studied using the standard phase-speed filters of time-distance
helioseismology. These filters, whose use is based upon a refractive model of
the perturbations, reduce the resultant travel time signal by at least an order
of magnitude at some distances. More effective filters are derived. Modeling
suggests that the center--annulus travel time difference
in the separation range \,-\, is insensitive to the
horizontally diverging flow from the centers of the supergranules and should
lead to a constant signal from the vertical flow. Our measurement of this
quantity, 5.1 \pm 0.1\secs, is constant over the distance range. This
magnitude of signal cannot be caused by the level of upflow at cell centers
seen at the photosphere of 10\ms extended in depth. It requires the vertical
flow to increase with depth. A simple Gaussian model of the increase with depth
implies a peak upward flow of 240\ms at a depth of 2.3\Mm and a peak
horizontal flow of 700\ms at a depth of 1.6\Mm.Comment: Solar Physics; 15 pages, 6 figure
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Recent Developments in Helioseismic Analysis Methods and Solar Data Assimilation
MR and AS have received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement no. 307117
Advances in Global and Local Helioseismology: an Introductory Review
Helioseismology studies the structure and dynamics of the Sun's interior by
observing oscillations on the surface. These studies provide information about
the physical processes that control the evolution and magnetic activity of the
Sun. In recent years, helioseismology has made substantial progress towards the
understanding of the physics of solar oscillations and the physical processes
inside the Sun, thanks to observational, theoretical and modeling efforts. In
addition to the global seismology of the Sun based on measurements of global
oscillation modes, a new field of local helioseismology, which studies
oscillation travel times and local frequency shifts, has been developed. It is
capable of providing 3D images of the subsurface structures and flows. The
basic principles, recent advances and perspectives of global and local
helioseismology are reviewed in this article.Comment: 86 pages, 46 figures; "Pulsation of the Sun and Stars", Lecture Notes
in Physics, Vol. 832, Rozelot, Jean-Pierre; Neiner, Coralie (Eds.), 201
Perspectives in Global Helioseismology, and the Road Ahead
We review the impact of global helioseismology on key questions concerning
the internal structure and dynamics of the Sun, and consider the exciting
challenges the field faces as it enters a fourth decade of science
exploitation. We do so with an eye on the past, looking at the perspectives
global helioseismology offered in its earlier phases, in particular the
mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer
datasets coupled with new developments in analysis, have altered, refined, and
changed some of those perspectives, and opened others that were not previously
available for study. We finish by discussing outstanding challenges and
questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures
Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study
Background
While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as ‘mild’, ‘moderate’ or ‘severe’ based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights.
Methods
We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and for cluster interpretation.
Results
Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial pressure of carbon dioxide, and body temperature. Notably, a cluster with ‘moderate’ TBI (by traditional classification) and deranged metabolic profile, had a worse outcome than a cluster with ‘severe’ GCS and a normal metabolic profile. Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and mortality (both p < 0.001).
Conclusions
Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care
Serum metabolome associated with severity of acute traumatic brain injury
Complex metabolic disruption is a crucial aspect of the pathophysiology of traumatic brain injury (TBI). Associations between this and systemic metabolism and their potential prognostic value are poorly understood. Here, we aimed to describe the serum metabolome (including lipidome) associated with acute TBI within 24 h post-injury, and its relationship to severity of injury and patient outcome. We performed a comprehensive metabolomics study in a cohort of 716 patients with TBI and non-TBI reference patients (orthopedic, internal medicine, and other neurological patients) from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) cohort. We identified panels of metabolites specifically associated with TBI severity and patient outcomes. Choline phospholipids (lysophosphatidylcholines, ether phosphatidylcholines and sphingomyelins) were inversely associated with TBI severity and were among the strongest predictors of TBI patient outcomes, which was further confirmed in a separate validation dataset of 558 patients. The observed metabolic patterns may reflect different pathophysiological mechanisms, including protective changes of systemic lipid metabolism aiming to maintain lipid homeostasis in the brain
Rehabilitation and outcomes after complicated vs uncomplicated mild TBI: results from the CENTER-TBI study
Background:
Despite existing guidelines for managing mild traumatic brain injury (mTBI), evidence-based treatments are still scarce and large-scale studies on the provision and impact of specific rehabilitation services are needed. This study aimed to describe the provision of rehabilitation to patients after complicated and uncomplicated mTBI and investigate factors associated with functional outcome, symptom burden, and TBI-specific health-related quality of life (HRQOL) up to six months after injury.
Methods:
Patients (n = 1379) with mTBI from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study who reported whether they received rehabilitation services during the first six months post-injury and who participated in outcome assessments were included. Functional outcome was measured with the Glasgow Outcome Scale – Extended (GOSE), symptom burden with the Rivermead Post Concussion Symptoms Questionnaire (RPQ), and HRQOL with the Quality of Life after Brain Injury – Overall Scale (QOLIBRI-OS). We examined whether transition of care (TOC) pathways, receiving rehabilitation services, sociodemographic (incl. geographic), premorbid, and injury-related factors were associated with outcomes using regression models. For easy comparison, we estimated ordinal regression models for all outcomes where the scores were classified based on quantiles.
Results:
Overall, 43% of patients with complicated and 20% with uncomplicated mTBI reported receiving rehabilitation services, primarily in physical and cognitive domains. Patients with complicated mTBI had lower functional level, higher symptom burden, and lower HRQOL compared to uncomplicated mTBI. Rehabilitation services at three or six months and a higher number of TOC were associated with unfavorable outcomes in all models, in addition to pre-morbid psychiatric problems. Being male and having more than 13 years of education was associated with more favorable outcomes. Sustaining major trauma was associated with unfavorable GOSE outcome, whereas living in Southern and Eastern European regions was associated with lower HRQOL.
Conclusions:
Patients with complicated mTBI reported more unfavorable outcomes and received rehabilitation services more frequently. Receiving rehabilitation services and higher number of care transitions were indicators of injury severity and associated with unfavorable outcomes. The findings should be interpreted carefully and validated in future studies as we applied a novel analytic approach.
Trial registration:
ClinicalTrials.gov NCT02210221
Influence of the atomic mass of the background gas on laser ablation plume propagation
A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point-blast-wave descriptions of laser ablation plume expansion in gas