231 research outputs found
On the complexity of computing with zero-dimensional triangular sets
We study the complexity of some fundamental operations for triangular sets in
dimension zero. Using Las-Vegas algorithms, we prove that one can perform such
operations as change of order, equiprojectable decomposition, or quasi-inverse
computation with a cost that is essentially that of modular composition. Over
an abstract field, this leads to a subquadratic cost (with respect to the
degree of the underlying algebraic set). Over a finite field, in a boolean RAM
model, we obtain a quasi-linear running time using Kedlaya and Umans' algorithm
for modular composition. Conversely, we also show how to reduce the problem of
modular composition to change of order for triangular sets, so that all these
problems are essentially equivalent. Our algorithms are implemented in Maple;
we present some experimental results
Fast Arithmetics in Artin-Schreier Towers over Finite Fields
An Artin-Schreier tower over the finite field F_p is a tower of field
extensions generated by polynomials of the form X^p - X - a. Following Cantor
and Couveignes, we give algorithms with quasi-linear time complexity for
arithmetic operations in such towers. As an application, we present an
implementation of Couveignes' algorithm for computing isogenies between
elliptic curves using the p-torsion.Comment: 28 pages, 4 figures, 3 tables, uses mathdots.sty, yjsco.sty Submitted
to J. Symb. Compu
Fast Conversion Algorithms for Orthogonal Polynomials
We discuss efficient conversion algorithms for orthogonal polynomials. We
describe a known conversion algorithm from an arbitrary orthogonal basis to the
monomial basis, and deduce a new algorithm of the same complexity for the
converse operation
- …