30 research outputs found

    Cancer cells resist antibody-mediated destruction by neutrophils through activation of the exocyst complex

    Get PDF
    Cytotoxicity; Immunity; ImmunotherapyCitotoxicidad; Inmunidad; InmunoterapiaCitotoxicitat; Immunitat; ImmunoterĆ piaBackground Neutrophils kill antibody-opsonized tumor cells using trogocytosis, a unique mechanism of destruction of the target plasma. This previously unknown cytotoxic process of neutrophils is dependent on antibody opsonization, FcĪ³ receptors and CD11b/CD18 integrins. Here, we demonstrate that tumor cells can escape neutrophil-mediated cytotoxicity by calcium (Ca2+)-dependent and exocyst complex-dependent plasma membrane repair. Methods We knocked down EXOC7 or EXOC4, two exocyst components, to evaluate their involvement in tumor cell membrane repair after neutrophil-induced trogocytosis. We used live cell microscopy and flow cytometry for visualization of the host and tumor cell interaction and tumor cell membrane repair. Last, we reported the mRNA levels of exocyst in breast cancer tumors in correlation to the response in trastuzumab-treated patients. Results We found that tumor cells can evade neutrophil antibody-dependent cellular cytotoxicity (ADCC) by Ca2+-dependent cell membrane repair, a process induced upon neutrophil trogocytosis. Absence of exocyst components EXOC7 or EXOC4 rendered tumor cells vulnerable to neutrophil-mediated ADCC (but not natural killer cell-mediated killing), while neutrophil trogocytosis remained unaltered. Finally, mRNA levels of exocyst components in trastuzumab-treated patients were inversely correlated to complete response to therapy. Conclusions Our results support that neutrophil attack towards antibody-opsonized cancer cells by trogocytosis induces an active repair process by the exocyst complex in vitro. Our findings provide insight to the possible contribution of neutrophils in current antibody therapies and the tolerance mechanism of tumor cells and support further studies for potential use of the exocyst components as clinical biomarkers.This work was supported by the Dutch Cancer Society (grant numbers 10300 and 11537, awarded to TKvdB and HLM, respectively)

    Sodium stibogluconate and CD47-SIRPa blockade overcome resistance of anti-CD20ā€“opsonized B cells to neutrophil killing

    Get PDF
    Anti-CD20 antibodies such as rituximab are broadly used to treat B-cell malignancies. These antibodies can induce various effector functions, including immune cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Neutrophils can induce ADCC toward solid cancer cells by trogoptosis, a cytotoxic mechanism known to be dependent on trogocytosis. However, neutrophils seem to be incapable of killing rituximab-opsonized B-cell lymphoma cells. Nevertheless, neutrophils do trogocytose rituximab-opsonized B-cell lymphoma cells, but this only reduces CD20 surface expression and is thought to render tumor cells therapeutically resistant to further rituximab-dependent destruction. Here, we demonstrate that resistance of B-cell lymphoma cells toward neutrophil killing can be overcome by a combination of CD47-SIRPa checkpoint blockade and sodium stibogluconate (SSG), an anti-leishmaniasis drug and documented inhibitor of the tyrosine phosphatase SHP-1. SSG enhanced neutrophil-mediated ADCC of solid tumor cells but enabled trogoptotic killing of B-cell lymphoma cells by turning trogocytosis from a mechanism that contributes to resistance into a cytotoxic anti-cancer mechanism. Tumor cell killing in the presence of SSG required both antibody opsonization of the target cells and disruption of CD47-SIRPa interactions. These results provide a more detailed understanding of the role of neutrophil trogocytosis in antibody-mediated destruction of B cells and clues on how to further optimize antibody therapy of B-cell malignancies

    SIRP alpha Controls the Activity of the Phagocyte NADPH Oxidase by Restricting the Expression of gp91(phox)

    No full text
    The phagocyte NADPH oxidase mediates oxidative microbial killing in granulocytes and macrophages. However, because the reactive oxygen species produced by the NADPH oxidase can also be toxic to the host, it is essential to control its activity. Little is known about the endogenous mechanism(s) that limits NADPH oxidase activity. Here, we demonstrate that the myeloid-inhibitory receptor SIRP alpha acts as a negative regulator of the phagocyte NADPH oxidase. Phagocytes isolated from SIRP alpha mutant mice were shown to have an enhanced respiratory burst. Furthermore, overexpression of SIRPa in human myeloid cells prevented respiratory burst activation. The inhibitory effect required interactions between SIRP alpha and its natural ligand, CD47, as well as signaling through the SIRP alpha cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Suppression of the respiratory burst by SIRP alpha was caused by a selective repression of gp91(phox) expression, the catalytic component of the phagocyte NADPH oxidase complex. Thus, SIRP alpha can limit gp91(phox) expression during myeloid development, thereby controlling the magnitude of the respiratory burst in phagocyte

    The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria

    No full text
    The plasma membrane glycoprotein receptor CD163 is a member of the scavenger receptor cystein-rich (SRCR) superfamily class B that is highly expressed on resident tissue macrophages in vivo. Previously, the molecule has been shown to act as a receptor for hemoglobin-haptoglobin complexes and to mediate cell-cell interactions between macrophages and developing erythroblasts in erythroblastic islands. Here, we provide evidence for a potential role for CD163 in host defense. In particular, we demonstrate that CD163 can function as a macrophage receptor for bacteria. CD163 was shown to bind both Gram-positive and -negative bacteria, and a previously identified cell-binding motif in the second scavenger domain of CD163 was sufficient to mediate this binding. Expression of CD163 in monocytic cells promoted bacteria-induced proinflammatory cytokine production. Finally, newly generated antagonistic antibodies against CD163 were able to potently inhibit cytokine production elicited by bacteria in freshly isolated human monocytes. These findings identify CD163 as a macrophage receptor for bacteria and suggest that, during bacterial infection, CD163 on resident tissue macrophages acts as an innate immune sensor and inducer of local inflammatio

    Cd47-sirpĪ± checkpoint inhibition enhances neutrophil-mediated killing of dinutuximab-opsonized neuroblastoma cells

    No full text
    High-risk neuroblastoma, especially after recurrence, still has a very low survival rate. Immune checkpoint inhibitors targeting T cells have shown remarkable clinical efficacy in adult solid tumors, but their effects in pediatric cancers have been limited so far. On the other hand, targeting myeloid immune checkpoints, such as CD47-SIPRĪ±, provide the opportunity to enhance antitumor effects of myeloid cells, including that of neutrophils, especially in the presence of cancer-opsonizing antibodies. Disialoganglioside (GD2)-expressing neuroblastoma cells targeted with anti-GD2 antibody dinutuximab are in part eradicated by neutrophils, as they recognize and bind the antibody targeted tumor cells through their Fc receptors. Therapeutic targeting of the innate immune checkpoint CD47-SIRPĪ± has been shown to promote the potential of neutrophils as cytotoxic cells in different solid tumor indications using different cancer-targeting antibodies. Here, we demonstrate that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is also controlled by the CD47-SIRPĪ± axis and can be further enhanced by antagonizing CD47-SIRPĪ± interactions. In particular, CD47-SIRPa checkpoint inhibition enhanced neutrophil-mediated ADCC of dinutuximab-opsonized adrenergic neuroblastoma cells, whereas mesenchymal neuroblastoma cells may evade immune recognition by a reduction of GD2 expression. These findings provide a rational basis for targeting CD47-SIRPĪ± interactions to potentiate dinutuximab responsiveness in neuroblastomas with adrenergic phenotype

    CD47-signal regulatory protein-Ī± (SIRPĪ±) interactions form a barrier for antibody-mediated tumor cell destruction

    No full text
    Monoclonal antibodies are among the most promising therapeutic agents for treating cancer. Therapeutic cancer antibodies bind to tumor cells, turning them into targets for immune-mediated destruction. We show here that this antibody-mediated killing of tumor cells is limited by a mechanism involving the interaction between tumor cell-expressed CD47 and the inhibitory receptor signal regulatory protein-Ī± (SIRPĪ±) on myeloid cells. Mice that lack the SIRPĪ± cytoplasmic tail, and hence its inhibitory signaling, display increased antibody-mediated elimination of melanoma cells in vivo. Moreover, interference with CD47-SIRPĪ± interactions by CD47 knockdown or by antagonistic antibodies against CD47 or SIRPĪ± significantly enhances the in vitro killing of trastuzumab-opsonized Her2/Neu-positive breast cancer cells by phagocytes. Finally, the response to trastuzumab therapy in breast cancer patients appears correlated to cancer cell CD47 expression. These findings demonstrate that CD47-SIRPĪ± interactions participate in a homeostatic mechanism that restricts antibody-mediated killing of tumor cells. This provides a rational basis for targeting CD47-SIRPĪ± interactions, using for instance the antagonistic antibodies against human SIRPĪ± described herein, to potentiate the clinical effects of cancer therapeutic antibodie

    SKAP2 acts downstream of CD11b/CD18 and regulates neutrophil effector function

    Get PDF
    BackgroundThe importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involvedĀ inĀ the induction of the high-affinity binding CD11b/CD18 conformation,Ā theĀ signaling pathways that orchestrate this response remain incompletely understood.MethodWe performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC).ResultsAmong the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells.ConclusionOur results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils

    Video_1_SKAP2 acts downstream of CD11b/CD18 and regulates neutrophil effector function.avi

    No full text
    BackgroundThe importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involvedĀ inĀ the induction of the high-affinity binding CD11b/CD18 conformation,Ā theĀ signaling pathways that orchestrate this response remain incompletely understood.MethodWe performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC).ResultsAmong the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells.ConclusionOur results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.</p
    corecore