6 research outputs found

    Cnnm proteins and uses thereof

    No full text
    The present invention relates proteins from the group consisting of CNNM1, CNNM2, CNNM 3 and CNNM4, its derivatives or fragments thereof for use as a medicament, for treatment and or diagnostic purposes. The invention further relates to a human genomic DNA, cDNA or mRNA sequence encoding for a functional protein chosen from the group consisting of CNNM1, CNNM2, CNNM3 and CNNM4 and functional derivatives or fragments thereof

    Abnormal creatine transport of mutations in monocarboxylate transporter 12 (MCT12) found in patients with age-related cataract can be partially rescued by exogenous chaperone CD147

    No full text
    Membrane transporters influence biological functions in the ocular lens. Here, we investigate the monocarboxylate transporter 12 (MCT12), also called creatine transporter 2 (CRT2), which is found in the ocular lens and is involved in cataract. As the age-related form affects about half of the population world-wide, understanding relevant pathomechanisms is a prerequisite for exploring non-invasive treatments. We screened the coding exons of the gene SLC16A12 in 877 patients from five cohorts, including Caucasian and Asian ethnicities. A previously identified risk factor, SNP rs3740030, displayed different frequencies in the Asian cohorts but risk could not be established. In 15 patients 13 very rare heterozygous nucleotide substitutions were identified, of which eight led to non-synonymous and four to synonymous amino acid exchanges and one mapped to the canonical splice site in intron 3. Their impact on creatine transport was tested in Xenopus laevis oocytes and human HEK293T cells. Four variants (p.Ser158Pro, p.Gly205Val, p.Pro395Gln and p.Ser453Arg) displayed severe reduction in both model systems, indicating conserved function. Two of these, p.Gly205Val, and p.Ser453Arg, did not localize to the oocyte membrane, suggesting possible impacts on protein interactions for transporter processing. In support, exogenously supplied excess of MCT12's chaperone CD147 in HEK293T cells led to a partial recovery of the defective uptake activity from p.Gly205Val and also from mutant p.Pro395Gln, which did localize to the membrane. Our findings provide first insight in the molecular requirements of creatine transporter, with particular emphasis on rescuing effects by its chaperone CD147, which can provide useful pharmacological information for substrate delivery

    Where are the missing gene defects in inherited retinal disorders? Intronic and synonymous variants contribute at least to 4% of CACNA1F-mediated inherited retinal disorders

    No full text
    Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.status: publishe

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore