61 research outputs found

    Olives and olive oil are sources of electrophilic fatty acid nitroalkenes

    Get PDF
    Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2-)-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO 2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2- under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet. © 2014 Fazzari et al

    Generation and dietary modulation of anti-inflammatory electrophilic omega-3 fatty acid derivatives

    Get PDF
    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2- dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Methods: Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30-55 years of age with a reported EPA+DHA consumption of ≤ 300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. Results: 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. Conclusions: The endogenous detection of these electro.©2014 Cipollina et al

    The Base Excision Repair System of Salmonella enterica serovar Typhimurium Counteracts DNA Damage by Host Nitric Oxide

    Get PDF
    Intracellular pathogens must withstand nitric oxide (NO·) generated by host phagocytes. Salmonella enterica serovar Typhimurium interferes with intracellular trafficking of inducible nitric oxide synthase (iNOS) and possesses multiple systems to detoxify NO·. Consequently, the level of NO· stress encountered by S. Typhimurium during infection in vivo has been unknown. The Base Excision Repair (BER) system recognizes and repairs damaged DNA bases including cytosine and guanine residues modified by reactive nitrogen species. Apurinic/apyrimidinic (AP) sites generated by BER glycosylases require subsequent processing by AP endonucleases. S. Typhimurium xth nfo mutants lacking AP endonuclease activity exhibit increased NO· sensitivity resulting from chromosomal fragmentation at unprocessed AP sites. BER mutant strains were thus used to probe the nature and extent of nitrosative damage sustained by intracellular bacteria during infection. Here we show that an xth nfo S. Typhimurium mutant is attenuated for virulence in C3H/HeN mice, and virulence can be completely restored by the iNOS inhibitor L-NIL. Inactivation of the ung or fpg glycosylase genes partially restores virulence to xth nfo mutant S. Typhimurium, demonstrating that NO· fluxes in vivo are sufficient to modify cytosine and guanine bases, respectively. Mutants lacking ung or fpg exhibit NO·–dependent hypermutability during infection, underscoring the importance of BER in protecting Salmonella from the genotoxic effects of host NO·. These observations demonstrate that host-derived NO· damages Salmonella DNA in vivo, and the BER system is required to maintain bacterial genomic integrity

    Protein S-guanylation by the biological signal 8-nitroguanosine 3\u27,5\u27-cyclic monophosphate

    Get PDF
    The signaling pathway of nitric oxide (NO) depends mainly on guanosine 3′,5′-cyclic monophosphate (cGMP, 1). Here we report the formation and chemical biology of a nitrated derivative of cGMP, 8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP, 2), in NO-mediated signal transduction. Immunocytochemistry demonstrated marked 8-nitro-cGMP production in various cultured cells in an NO-dependent manner. This finding was confirmed by HPLC plus electrochemical detection and tandem mass spectrometry. 8-Nitro-cGMP activated cGMP-dependent protein kinase and showed unique redox-active properties independent of cGMP activity. Formation of protein Cys-cGMP adducts by 8-nitro-cGMP was identified as a new post-translational modification, which we call protein S-guanylation. 8-Nitro-cGMP seems to regulate the redox-sensor signaling protein Keap1, via S-guanylation of the highly nucleophilic cysteine sulfhydryls of Keap1. This study reveals 8-nitro-cGMP to be a second messenger of NO and sheds light on new areas of the physiology and chemical biology of signal transduction by NO
    • …
    corecore