3,136 research outputs found
Micropaleontological studies of lunar samples. A search for biogenic structures in the Apollo 12 lunar samples
Biogeochemical and microstructural analyses on lunar rock and dust samples for biological compound
Early Archean (approximately 3.4 Ga) prokaryotic filaments from cherts of the apex basalt, Western Australia: The oldest cellularly preserved microfossils now known
In comparison with that known from later geologic time, the Archean fossil record is miniscule: although literally hundreds of Proterozoic formations, containing more that 2800 occurrences of bona fide microfossils are now known, fewer than 30 units containing some 43 categories of putative microfossils (the vast majority of which are of questionable authenticity) have been reported from the Archean. Among the oldest known fossils are Early Archean filaments reported from cherts of the Towers Formation and the Apex Basalt of the 3.3-3.6 Ga-old Warrawoona Group of Western Australia. The paleobiologic significance of the Towers Formation microstructures is open to question: thin aggregated filaments are properly regarded as dubiomicrofossils (perhaps biogenic, but perhaps not); therefore, they cannot be regarded as firm evidence of Archean life. Although authentic, filamentous microfossiles were reported from a second Towers Formation locality, because the precise layer containing the fossiliferous cherts was not relocated, this discovery can neither be reconfirmed by the original collector nor confirmed independently by other investigators. Discovery of microfossils in bedded cherts of the Apex Basalt, the stratigraphic unit immediately overlying the Towers Formation, obviates the difficulties stored above. The cellularly preserved filaments of the Apex Basalt meet all of the criteria required of a bona fide Archean microfossils. Recent studies indicate that the Apex assemblage includes at least six morphotypes of uniseriate filaments, composed of barrel-shaped, discoidal, or quadrate cells and exhibiting rounded or conical terminal cells and medial bifurcated and paired half-cells that reflect the occurrence of prokaryotic binary cell division. Interestingly, the majority of these morphotypes are morphologically more similar to extant cyanobacteria than to modern filamentous bacteria. Prokaryotes seem clearly to have been hypobradytelic, and the evidence suggests (but does not prove) that physiologically advanced oxygen-producing photosynthesizers may have been represented in the Early Archean biota
Recommended from our members
Controls on development and diversity of Early Archean stromatolites
The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans
Report of the Terrestrial Bodies Science Working Group. Volume 5: Mars
Present knowledge of the global properties and surface characteraretics of Mars and the composition and dynamics of its atmosphere are reviewed. The objectives of proposed missions, the exploration strategy, and supporting research and technology required are delineated
In search of phylogenetic congruence between molecular and morphological data in bryozoans with extreme adult skeletal heteromorphy
peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tsab20© Crown Copyright 2015. This document is the author's final accepted/submitted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it
Origin of Life
The evolution of life has been a big enigma despite rapid advancements in the
fields of biochemistry, astrobiology, and astrophysics in recent years. The
answer to this puzzle has been as mind-boggling as the riddle relating to
evolution of Universe itself. Despite the fact that panspermia has gained
considerable support as a viable explanation for origin of life on the Earth
and elsewhere in the Universe, the issue remains far from a tangible solution.
This paper examines the various prevailing hypotheses regarding origin of life
like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes
that delivery of life-bearing organic molecules by the comets in the early
epoch of the Earth alone possibly was not responsible for kick-starting the
process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio
Human helminth therapy to treat inflammatory disorders - where do we stand?
Parasitic helminths have evolved together with the mammalian immune system over many millennia and as such they have become remarkably efficient modulators in order to promote their own survival. Their ability to alter and/or suppress immune responses could be beneficial to the host by helping control excessive inflammatory responses and animal models and pre-clinical trials have all suggested a beneficial effect of helminth infections on inflammatory bowel conditions, MS, asthma and atopy. Thus, helminth therapy has been suggested as a possible treatment method for autoimmune and other inflammatory disorders in humans
The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group
While the properties of the Kondo model in equilibrium are very well
understood, much less is known for Kondo systems out of equilibrium. We study
the properties of a quantum dot in the Kondo regime, when a large bias voltage
V and/or a large magnetic field B is applied. Using the perturbative
renormalization group generalized to stationary nonequilibrium situations, we
calculate renormalized couplings, keeping their important energy dependence. We
show that in a magnetic field the spin occupation of the quantum dot is
non-thermal, being controlled by V and B in a complex way to be calculated by
solving a quantum Boltzmann equation. We find that the well-known suppression
of the Kondo effect at finite V>>T_K (Kondo temperature) is caused by inelastic
dephasing processes induced by the current through the dot. We calculate the
corresponding decoherence rate, which serves to cut off the RG flow usually
well inside the perturbative regime (with possible exceptions). As a
consequence, the differential conductance, the local magnetization, the spin
relaxation rates and the local spectral function may be calculated for large
V,B >> T_K in a controlled way.Comment: 9 pages, invited paper for a special edition of JPSJ "Kondo Effect --
40 Years after the Discovery", some typos correcte
Habitable Zones in the Universe
Habitability varies dramatically with location and time in the universe. This
was recognized centuries ago, but it was only in the last few decades that
astronomers began to systematize the study of habitability. The introduction of
the concept of the habitable zone was key to progress in this area. The
habitable zone concept was first applied to the space around a star, now called
the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable
zones have been proposed. We review the historical development of the concept
of habitable zones and the present state of the research. We also suggest ways
to make progress on each of the habitable zones and to unify them into a single
concept encompassing the entire universe.Comment: 71 pages, 3 figures, 1 table; to be published in Origins of Life and
Evolution of Biospheres; table slightly revise
- …