2,257 research outputs found

    Evolution of magnetic fluctuations through the Fe-induced paramagnetic to ferromagnetic transition in Cr2_2B

    Full text link
    In itinerant ferromagnets, the quenched disorder is predicted to dramatically affect the ferromagnetic to paramagnetic quantum phase transition driven by external control parameters at zero temperature. Here we report a study on Fe-doped Cr2_2B, which, starting from the paramagnetic parent, orders ferromagnetically for Fe-doping concentrations xx larger than xc=2.5x_{\rm c}=2.5\%. In parent Cr2_2B, 11^{11}B nuclear magnetic resonance data reveal the presence of both ferromagnetic and antiferromagnetic fluctuations. The latter are suppressed with Fe-doping, before the ferromagnetic ones finally prevail for x>xcx>x_{\rm c}. Indications for non-Fermi liquid behavior, usually associated with the proximity of a quantum critical point, were found for all samples, including undoped Cr2_2B. The sharpness of the ferromagnetic-like transition changes on moving away from xcx_{\rm c}, indicating significant changes in the nature of the magnetic transitions in the vicinity of the quantum critical point. Our data provide constraints for understanding quantum phase transitions in itinerant ferromagnets in the limit of weak quenched disorder.Comment: 8 pages, 7 figure

    Lone Pair Effect, Structural Distortions and Potential for Superconductivity in Tl Perovskites

    Full text link
    Drawing the analogy to BaBiO3, we investigate via ab-initio electronic structure calculations potential new superconductors of the type ATlX3 with A = Rb, Cs and X = F, Cl, and Br, with a particular emphasis on RbTlCl3. Based on chemical reasoning, supported by the calculations, we show that Tl-based perovskites have structural and charge instabilities driven by the lone pair effect, similar to the case of BaBiO3, effectively becoming A2Tl1+Tl3+X6. We find that upon hole doping of RbTlCl3, structures without Tl1+, Tl3+ charge disproportionation become more stable, although the ideal cubic perovskite, often viewed as the best host for superconductivity, should not be the most stable phase in the system. The known superconductor (Sr,K)BiO3 and hole doped RbTlCl3, predicted to be most stable in the same tetragonal structure, display highly analogous calculated electronic band structures.Comment: 5 pages, 5 figure

    Topological Semimetals in Square-Net Materials

    Full text link
    Many materials crystallize in structure types that feature a square-net of atoms. While these compounds can exhibit many different properties, some members of this family are topological materials. Within the square-net-based topological materials, the observed properties are rich, ranging for example from nodal-line semimetals to a bulk half-integer quantum Hall effect. Hence, the potential for guided design of topological properties is enormous. Here we provide an overview of the crystallographic and electronic properties of these phases and show how they are linked, with the goal of understanding which square-net materials can be topological, and to predict additional examples. We close the review by discussing the experimentally observed electronic properties in this family.Comment: review article, 25 pages, 9 figures, 2 table

    Doctoral consortium of the 17th International Conference on Group Decision and Negotiation

    Full text link

    Superconducting NdCeCuO Bicrystal Grain Boundary Josephson Junctions

    Full text link
    We have studied the electric transport properties of symmetrical [001] tilt NdCeCuO bicrystal grain boundary Josephson junctions (GBJs) fabricated on SrTiO bicrystal substrates with misorientation angles of 24 and 36.8 degree. The superconducting properties of the NdCeCuO-GBJs are similar to those of GBJs fabricated from the hole doped high temperature superconductors (HTS). The critical current density Jc decreases strongly with increasing misorientation angle. The products of the critical current Ic and the normal resistance Rn (about 0.1 mV at 4.2 K) are small compared to the gap voltage and fit well to the universal scaling law (IcRn is proportional to the square root of Jc) found for GBJs fabricated from the hole doped HTS. This suggests that the symmetry of the order parameter, which most likely is different for the electron and the hole doped HTS has little influence on the characteristic properties of symmetrical [001] tilt GBJs.Comment: 3 pages, 4 figures, to be published in Applied Physics Letter

    Characterization of the Heavy Metal Pyrochlore Lattice Superconductor CaIr2

    Full text link
    We report the electronic properties of the cubic laves phase superconductor CaIr2 (Tc = 5.8 K), in which the Ir atoms have a Pyrochlore lattice. The estimated superconducting parameters obtained from magnetization and specific heat measurements indicate that CaIr2 is a weakly coupled BCS superconductor. Electronic band structure calculations show that the Ir d-states are dominant at the Fermi level, creating a complex Fermi surface that is impacted substantially by spin orbit coupling.Comment: 6 pages, 4 figs and 1 table. arXiv admin note: text overlap with arXiv:1406.295

    Andreev Bound States in High Temperature Superconductors

    Full text link
    Andreev bound states (ABS) at the surface of superconductors are expected for any pair potential showing a sign change in different k-directions with their spectral weight depending on the relative orientation of the surface and the pair potential. We report on the observation of ABS in HTS employing tunneling spectroscopy on bicrystal grain boundary Josephson junctions (GBJs). The tunneling spectra were studied as a function of temperature and applied magnetic field. The tunneling spectra of GBJ formed by YBCO, BSCCO, and LSCO show a pronounced zero bias conductance peak that can be interpreted in terms of Andreev bound states at zero energy that are expected at the surface of HTS having a d-wave symmetry of the order parameter. In contrast, for the most likely s-wave HTS NCCO no zero bias conductance peak was observed. Applying a magnetic field results in a shift of spectral weight from zero to finite energy. This shift is found to depend nonlinearly on the applied magnetic field. Further consequences of the Andreev bound states are discussed and experimental evidence for anomalous Meissner currents is presented.Comment: 17 pages, 10 figures, to appear in Eur. Phys. J.
    corecore