616 research outputs found

    Electrochemical oxidation and detection of sodium urate in alkaline media on a copper oxides electrode

    Get PDF
    Electrochemical behaviour of copper oxides electrode in the presence of sodium urate was investigated. The correlation between the anodic oxidation and the amperometric detection of sodium urate in the alkaline medium on copper oxides electrode was analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The intereference from sodium tartrate presence in the aqueous alkaline solution was tested. Copper oxides electrodes can be used successfully for amperometric detection of both sodium urate and mixture of urate and tartrate as a cumulative response, in alkaline media, the target compound did not interfere each other. Journal of Applied Sciences and Environmental Management Vol. 10(1) 2006: 25-3

    Seismogenic magma intrusion before the 2010 eruption of Eyjafjallajökull volcano, Iceland

    Get PDF
    We present relatively relocated earthquake hypocentres for >1000 microearthquakes (ML < 3) that occurred during the 2 weeks immediately prior to the 2010 March 20 fissure eruption at Fimmvörðuháls on the flank of Eyjafjallajökull volcano in Iceland. Our hypocentre locations lie predominantly in horizontally separated clusters spread over an area of 10 km2 and approximately 4 km below sea level (5 km below the surface). Seismic activity in the final 4 d preceding the eruption extended to shallower levels <2 km below sea level and propagated to the surface at the Fimmvörðuháls eruption site on the day the eruption started. We demonstrate using synthetic data that the observed apparent ∼1 km vertical elongation of seismic clusters is predominantly an artefact caused by only small errors (0.01–0.02 s) in arrival time data. Where the signal-to-noise ratio was sufficiently good to make subsample arrival time picks by cross-correlation of both P- and S-wave arrivals, the mean depth of 103 events in an individual cluster were constrained to 3.84 ± 0.06 km. Epicentral locations are significantly less vulnerable to arrival time errors than are depths for the seismic monitoring network we used. Within clusters of typically 100 recorded earthquakes, most of the arrivals exhibit similar waveforms and identical patterns of P-wave first-motion polarities across the entire monitoring network. The clusters of similar events comprise repetitive sources in the same location with the same orientations of failure, probably on the same rupture plane. The epicentral clustering and similarity of source mechanisms suggest that much of the seismicity was generated at approximately static constrictions to magma flow in an inflating sill complex. These constrictions may act as a form of valve in the country rock, which ruptures when the melt pressure exceeds a critical level, then reseals after a pulse of melt has passed through. This would generate recurring similar source mechanisms on the same weak fault plane as the connection between segments of the sill system is repeatedly refractured in the same location. We infer that the magmatic intrusion causing most of the seismicity was likely to be a laterally inflating complex of sills at about 4 km depth, with seismogenic pinch-points occurring between aseismic compartments of the sills, or between adjacent magma lobes as they inflated. During the final 4 d preceding the eruption onset between 22:30 and 23:30 UTC on 2010 March 20, the seismicity suggests that melt progressed upwards to a depth of ∼2 km. This seismicity was probably caused by fracturing of the country rock at the margins of the propagating dyke. Subsequently, on the morning of the eruption a dyke propagated eastward from the region of precursory seismic activity to the Fimmvörðuháls eruption site

    Thin film techniques for solid oxide fuel cells

    Full text link

    Effect of H<sub>2</sub>S and HCl contaminants on nickel and ceria pattern anode solid oxide fuel cells

    Get PDF
    In this study, with the motivation of elucidating the effect of H2S and HCl on solid oxide fuel cell anodes, nickel and ceria pattern anodes are prepared on yttrium-stabilized zirconia electrolyte, and the effect of H2S and HCl on their performance is tested using electrochemical impedance spectroscopy. However, it has been found that while H2S adversely impacts both nickel and ceria, the poisoning caused is reversible for nickel and only partially reversible for ceria. Poisoning kinetics are similar and fast for both materials, while recovery kinetics are slower for ceria than nickel. High sulfur coverage is the rate-limiting factor inferred from the elementary kinetic modeling. Unlike H2S, the presence of HCl appeared to be favorable for electrochemical oxidation as the polarization resistance of both pattern electrode cells decreased upon feeding HCl contaminated hydrogen gas. Similar behavior has not been reported previously, and the conclusion regarding underlying mechanisms requires further investigation
    • …
    corecore