6 research outputs found

    High incidence of diabetes after stroke in young adults and risk of recurrent vascular events: the FUTURE study

    Get PDF
    BACKGROUND: Diabetes diagnosed prior to stroke in young adults is strongly associated with recurrent vascular events. The relevance of impaired fasting glucose (IFG) and incidence of diabetes after young stroke is unknown. We investigated the long-term incidence of diabetes after young stroke and evaluated the association of diabetes and impaired fasting glucose with recurrent vascular events. METHODS: This study was part of the FUTURE study. All consecutive patients between January 1, 1980, and November 1, 2010 with TIA or ischemic stroke, aged 18-50, were recruited. A follow-up assessment was performed in survivors between November 1, 2009 and January 1, 2012 and included an evaluation for diabetes, fasting venous plasma glucose and recurrent vascular events. The association of diabetes and IFG with recurrent vascular events was assessed by logistic regression analysis, adjusted for age, sex and follow-up duration. RESULTS: 427 survivors without a medical history of diabetes were included in the present analysis (mean follow-up of 10.1 (SD 8.4) years; age 40.3 (SD 7.9) years). The incidence rate of diabetes was 7.9 per 1000 person-years and the prevalence of IFG was 21.1%. Patients with diabetes and IFG were more likely to have experienced any vascular event than those with normal fasting glucose values (OR 3.5 (95%CI 1.5-8.4) for diabetes and OR 2.5 (95%CI 1.3-4.8) for IFG). CONCLUSIONS: Diabetes or IFG in young stroke survivors is frequent and is associated with recurrent vascular events. Regular screening for IFG and diabetes in this population, yields potential for secondary prevention

    Kidney Dysfunction Increases Mortality and Incident Events after Young Stroke: The FUTURE Study.

    Get PDF
    BACKGROUND: In about 30% of young stroke patients, no cause can be identified. In elderly patients, kidney dysfunction has been suggested as a contributing risk factor for mortality as well as stroke. There are hypotheses that novel non-traditional risk factors, like chronic inflammation and oxidative stress, are involved in chronic kidney disease, affecting the cerebral microvasculature that would in turn lead to stroke. Our objective is to investigate the influence of kidney dysfunction on long-term mortality and incident vascular events after stroke in young adults aged 18 through 50 and if this relationship would be independent of other cardiovascular risk factors. METHODS: We prospectively included 460 young stroke patients with an ischemic stroke or transient ischemic attack admitted to our department between January 1, 1980 and November 1, 2010. Follow-up was done between 2014 and 2015. Estimated glomerular filtration rate (eGFR) was calculated from baseline creatinine levels and was divided in 3 subgroups: eGFR 120 ml/min/1.73 m2. Cox proportional hazard models were used to determine the effect of kidney dysfunction on mortality and incident vascular events, adjusting for cardiovascular risk factors. RESULTS: An eGFR <60 (HR 4.6; 95% CI 2.6-8.2) was associated with an increased risk of death and an increased risk of incident stroke (HR 4.1; 95% CI 1.9-9.0) independent of cardiovascular risk factors, but it was not associated with other vascular events. The point estimate for the 15-year cumulative mortality was 70% (95% CI 46-94) for patients with a low eGFR, 24% (95% CI 18-30) for patients with a normal eGFR and 30% (95% CI 12-48) for patients with a high eGFR. The point estimate for the 15-year cumulative risk of incident stroke was 45% (95% CI 16-74) for patients with a low eGFR, 13% (95% CI 9-17) for patients with a normal eGFR and 8% (95% CI 0-18) for patients with a high eGFR. CONCLUSIONS: Kidney dysfunction is related to long-term mortality and stroke recurrence, but not to incident cardiovascular disease, on average 11 years after young stroke. This warrants a more intensive follow-up of young stroke patients with signs of kidney dysfunction in the early phase. In addition, the clear association between kidney dysfunction and incident stroke seen in our young stroke population might be a first step in the recognition of kidney dysfunction as a new risk factor for the development of stroke at young age. Also, it can lead to new insights in the etiological differences between cardiovascular and cerebrovascular disease.This study was funded by the Dutch Epilepsy Fund (grant number 10-18)

    Improved discrimination of AD patients using beta-amyloid((1-42)) and tau levels in CSF

    No full text
    Objective: To evaluate CSF levels of beta-amyloid((1-42)) (A beta(42)) alone and in combination with CSF tau for distinguishing AD from other conditions. Methods: At 10 centers in Europe and the United States, 150 CSF samples from AD patients were analyzed and compared with 100 CSF samples from healthy volunteers or patients with disorders not associated with pathologic conditions of the brain (CON), 84 patients with other neurologic disorders (ND), and 79 patients with non-Alzheimer types of dementia (NAD). Sandwich ELISA techniques were used on site for measuring A beta(42) and tau. Results: Median levels of A beta(42) in CSF were significantly lower in AD (487 pg/mL) than in CON (849 pg/mL; p = 0.001), ND (643 pg/mL; p = 0.001), and NAD (603 pg/mL; p = 0.001). Discrimination of AD from CON and ND was significantly improved by the combined assessment of AB,, and tau. At 85% sensitivity, specificity of the combined test was 86% (95% CI: 81% to 91%) compared with 55% (95% CI: 47% to 62%) for A beta(42) alone and 65% (95% CI: 58% to 72%) for tau. The combined test at 85% sensitivity was 58% (95% CI: 47% to 69%) specific for NAD. The APOE e4 gene load was negatively correlated with A beta(42) levels not only in AD but also in NAD. Conclusions: The combined measure of CSF A beta(42) and tau meets the requirements for clinical use in discriminating AD from normal aging and specific neurologic disorders.status: publishe
    corecore