560 research outputs found

    Mode of Action of Farnesol, the “Noble Unknown” in Particular in Ca2+ Homeostasis, and Its Juvenile Hormone-Esters in Evolutionary Retrospect

    Get PDF
    Farnesol, the sesquiterpenoid precursor of insect juvenile hormones (JH) that itself has JH activity, existed already long before animals and their hormones came into being. Although it is omnipresent in all eukaryotes, this molecule remains a “noble unknown” in cell physiology. It is neither documented as a hormone nor as another type of signaling molecule. To date, its function as an intermediate in the synthesis of squalene-cholesterol-steroids in chordates/vertebrates, and of the insect/arthropod JHs, esters of farnesol, in the mevalonate biosynthetic pathway is assumed to be the only one. This assumption neglects that already two decades ago, farnesol has been shown to be a potent endogenous inhibitor of N-type voltage-gated Ca2+ channels in some mammalian cell types. The tandem mevalonate pathway and Ca2+ channels originated early in eukaryotic evolution, and has since been well conserved, “promoting” it as a ubiquitous player in Ca2+ homeostasis in all eukaryotes. This paper accentuates how this drastic change in thinking gained momentum after the discovery by Paroulek and Sláma that the huge amounts of JH I in male accessory glands of the Cecropia moth, are actually synthesized in these glands themselves and not in the corpora allata, the hitherto assumed unique synthesis site of such compounds. In addition, MAG-JHs have no hormonal- but an exocrine function. Here we hypothesize that MAG-JHs may function in protecting the spermatozoa against toxic Ca2+ concentrations, and in enabling their flagellum to undulate. They may do so by acting through membrane receptors. Our novel paradigm assigns to farnesol/JHs a function of flexible hydrophobic molecular valves for restricting untimely Ca2+-passage through some types of canonical Ca2+channels, using covalently bound farnesyl- or geranyl-geranyl group attachment as well as GPCRs-G proteins all containing a prenyl group. The high rotatable bond count, and their horseshoe-shape are instrumental to their valve function. In our paradigm, Met/Tai and Gce, to date generally thought to be the (only) functional (nuclear) receptors for JHs, are classified as probable Ca2+-sensitive transcription factors. Some theoretical and practical considerations for possible applications in a medical context will be discussed

    Flip-Flopping Retinal in Microbial Rhodopsins as a Template for a Farnesyl/Prenyl Flip-Flop Model in Eukaryote GPCRs

    Get PDF
    Thirty years after the first description and modeling of G protein coupled receptors (GPCRs), information about their mode of action is still limited. One of the questions that is hard to answer is: how do the allosteric changes in the GPCR induced by, e.g., ligand binding in the end activate a G protein-dependent intracellular pathway (e.g., via the cAMP or the phosphatidylinositol signal pathways). Another question relates to the role of prenylation of G proteins. Today’s “consensus model” states that protein prenylation is required for the assembly of GPCR-G protein complexes. Although it is well-known that protein prenylation is the covalent addition of a farnesyl- or geranylgeranyl moiety to the C terminus of specific proteins, e.g., α or γ G protein, the reason for this strong covalent binding remains enigmatic. The arguments for a fundamental role for prenylation of G proteins other than just being a hydrophobic linker, are gradually accumulating. We uncovered a dilemma that at first glance may be considered physiologically irrelevant, however, it may cause a true change in paradigm. The consensus model suggests that the only functional role of prenylation is to link the G protein to the receptor. Does the isoprenoid nature of the prenyl group and its exact site of attachment somehow matter? Or, are there valid arguments favoring the alternative possibility that a key role of the G protein is to guide the covalently attached prenyl group to – and it hold it in – a very specific location in between specific helices of the receptor? Our model says that the farnesyl/prenyl group – aided by its covalent attachment to a G protein -might function in GPCRs as a horseshoe-shaped flexible (and perhaps flip-flopping) hydrophobic valve for restricting (though not fully inhibiting) the untimely passage of Ca2+, like retinal does for the passage of H+ in microbial rhodopsins that are ancestral to many GPCRs

    Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry

    Get PDF
    BACKGROUND: For holometabolous insects there has been an explosion of proteomic and peptidomic information thanks to large genome sequencing projects. Heterometabolous insects, although comprising many important species, have been far less studied. The migratory locust Locusta migratoria, a heterometabolous insect, is one of the most infamous agricultural pests. They undergo a well-known and profound phase transition from the relatively harmless solitary form to a ferocious gregarious form. The underlying regulatory mechanisms of this phase transition are not fully understood, but it is undoubtedly that neuropeptides are involved. However, neuropeptide research in locusts is hampered by the absence of genomic information. RESULTS: Recently, EST (Expressed Sequence Tag) databases from Locusta migratoria were constructed. Using bioinformatical tools, we searched these EST databases specifically for neuropeptide precursors. Based on known locust neuropeptide sequences, we confirmed the sequence of several previously identified neuropeptide precursors (i.e. pacifastin-related peptides), which consolidated our method. In addition, we found two novel neuroparsin precursors and annotated the hitherto unknown tachykinin precursor. Besides one of the known tachykinin peptides, this EST contained an additional tachykinin-like sequence. Using neuropeptide precursors from Drosophila melanogaster as a query, we succeeded in annotating the Locusta neuropeptide F, allatostatin-C and ecdysis-triggering hormone precursor, which until now had not been identified in locusts or in any other heterometabolous insect. For the tachykinin precursor, the ecdysis-triggering hormone precursor and the allatostatin-C precursor, translation of the predicted neuropeptides in neural tissues was confirmed with mass spectrometric techniques. CONCLUSION: In this study we describe the annotation of 6 novel neuropeptide precursors and the neuropeptides they encode from the migratory locust, Locusta migratoria. By combining the manual annotation of neuropeptides with experimental evidence provided by mass spectrometry, we demonstrate that the genes are not only transcribed but also translated into precursor proteins. In addition, we show which neuropeptides are cleaved from these precursor proteins and how they are post-translationally modified

    Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2

    Get PDF
    The antiglycemic drug metformin, widely prescribed as first-line treatment of type II diabetes mellitus, has lifespan-extending properties. Precisely how this is achieved remains unclear. Via a quantitative proteomics approach using the model organism Caenorhabditis elegans, we gained molecular understanding of the physiological changes elicited by metformin exposure, including changes in branched-chain amino acid catabolism and cuticle maintenance. We show that metformin extends lifespan through the process of mitohormesis and propose a signaling cascade in which metformin-induced production of reactive oxygen species increases overall life expectancy. We further address an important issue in aging research, wherein so far, the key molecular link that translates the reactive oxygen species signal into a prolongevity cue remained elusive. We show that this beneficial signal of the mitohormetic pathway is propagated by the peroxiredoxin PRDX-2. Because of its evolutionary conservation, peroxiredoxin signaling might underlie a general principle of prolongevity signaling

    Gonadotropin-Releasing Hormone and Adipokinetic Hormone Signaling Systems Share a Common Evolutionary Origin

    Get PDF
    Gonadotropin-releasing hormone (GnRH) is a critical and central hormone that regulates vertebrate reproduction. The high conservation of GnRH signaling within the chordates (deuterostomians) raises the important question as to whether its appearance might date back prior to the divergence of protostomian and deuterostomian lineages, about 700 million years ago. This leads to several important questions regarding the evolution of the GnRH family. Has GnRH been retained in most protostomian lineages? And was regulation of reproduction already a function of ancestral GnRH? The first question can undoubtedly be answered affirmatively since several GnRH-like sequences have been found in wide variety of protostomian and deuterostomian phyla. However, based on their different primary functions in different phyla – which implies a less unanimous answer on the second question – consistency in the nomenclature of this peptide family has been lost. A comparative and phylogenetic approach shows that the ecdysozoan adipokinetic hormones (AKHs), lophotrochozoan GnRHs and chordate GnRHs are structurally related and suggests that they all originate from a common ancestor. This review supports the view that the AKH–GnRH signaling system probably arose very early in metazoan evolution, prior to the divergence of protostomians and deuterostomians

    Farnesol-Like Endogenous Sesquiterpenoids in Vertebrates: The Probable but Overlooked Functional ?Inbrome? Anti-Aging Counterpart of Juvenile Hormone of Insects?

    Get PDF
    Literature on the question whether the juvenile stage of vertebrates is hormonally regulated is scarce. It seems to be intuitively assumed that this stage of development is automated, and does not require any specific hormone(s). Such reasoning mimics the state of affairs in insects until it was shown that surgical removal of a tiny pair of glands in the head, the corpora allata, ended larval life and initiated metamorphosis. Decades later, the responsible hormone was found and named ?juvenile hormone? (JH) because when present, it makes a larva molt into another larval stage. JH is a simple ester of farnesol, a sesquiterpenoid present in all eukaryotes. Whereas vertebrates do not have an anatomical counterpart of the corpora allata, their tissues do contain farnesol-like sesquiterpenoids (FLS). Some display typical JH activity when tested in appropriate insect bioassays. Some FLS are intermediates in the biosynthetic pathway of cholesterol, a compound that insects and nematodes (=Ecdysozoa) cannot synthesize by themselves. They ingest it as a vitamin. Until a recent (2014) reexamination of the basic principle underlying insect metamorphosis, it had been completely overlooked that the Ca2+-pump (SERCA) blocker thapsigargin is a sesquiterpenoid that mimics the absence of JH in inducing apoptosis. In our opinion, being in the juvenile state is primarily controlled by endogenous FLS that participate in controlling the activity of Ca2+-ATPases in the sarco(endo)plasmic reticulum (SERCAs), not only in insects but in all eukaryotes. Understanding the control mechanisms of being in the juvenile state may boost research not only in developmental biology in general, but also in diseases that develop after the juvenile stage, e.g., Alzheimer?s disease. It may also help to better understand some of the causes of obesity, a syndrome that holometabolous last larval insects severely suffer from, and for which they found a very drastic but efficient solution, namely metamorphosis

    Super-resolution mapping of glutamate receptors in <i>C. elegans</i> by confocal correlated PALM

    Get PDF
    Photoactivated localization microscopy (PALM) is a super-resolution imaging technique based on the detection and subsequent localization of single fluorescent molecules. PALM is therefore a powerful tool in resolving structures and putative interactions of biomolecules at the ultimate analytical detection limit. However, its limited imaging depth restricts PALM mostly to in vitro applications. Considering the additional need for anatomical context when imaging a multicellular organism, these limitations render the use of PALM in whole animals difficult. Here we integrated PALM with confocal microscopy for correlated imaging of the C. elegans nervous system, a technique we termed confocal correlated PALM (ccPALM). The neurons, lying below several tissue layers, could be visualized up to 10 μm deep inside the animal. By ccPALM, we visualized ionotropic glutamate receptor distributions in C. elegans with an accuracy of 20 nm, revealing super-resolution structure of receptor clusters that we mapped onto annotated neurons in the animal. Pivotal to our results was the TIRF-independent detection of single molecules, achieved by genetic regulation of labeled receptor expression and localization to effectively reduce the background fluorescence. By correlating PALM with confocal microscopy, this platform enables dissecting biological structures with single molecule resolution in the physiologically relevant context of whole animals

    Differential Proteomics in Dequeened Honeybee Colonies Reveals Lower Viral Load in Hemolymph of Fertile Worker Bees

    Get PDF
    The eusocial societies of honeybees, where the queen is the only fertile female among tens of thousands sterile worker bees, have intrigued scientists for centuries. The proximate factors, which cause the inhibition of worker bee ovaries, remain largely unknown; as are the factors which cause the activation of worker ovaries upon the loss of queen and brood in the colony. In an attempt to reveal key players in the regulatory network, we made a proteomic comparison of hemolymph profiles of workers with completely activated ovaries vs. rudimentary ovaries. An unexpected finding of this study is the correlation between age matched worker sterility and the enrichment of Picorna-like virus proteins. Fertile workers, on the other hand, show the upregulation of potential components of the immune system. It remains to be investigated whether viral infections contribute to worker sterility directly or are the result of a weaker immune system of sterile workers

    Ancestral glycoprotein hormone-receptor pathway controls growth in C. elegans

    Get PDF
    In vertebrates, thyrostimulin is a highly conserved glycoprotein hormone that, besides thyroid stimulating hormone (TSH), is a potent ligand of the TSH receptor. Thyrostimulin is considered the most ancestral glycoprotein hormone and orthologs of its subunits, GPA2 and GPB5, are widely conserved across vertebrate and invertebrate animals. Unlike TSH, however, the functions of the thyrostimulin neuroendocrine system remain largely unexplored. Here, we identify a functional thyrostimulin-like signaling system in Caenorhabditis elegans. We show that orthologs of GPA2 and GPB5, together with thyrotropin-releasing hormone (TRH) related neuropeptides, constitute a neuroendocrine pathway that promotes growth in C. elegans. GPA2/GPB5 signaling is required for normal body size and acts through activation of the glycoprotein hormone receptor ortholog FSHR-1. C. elegans GPA2 and GPB5 increase cAMP signaling by FSHR-1 in vitro. Both subunits are expressed in enteric neurons and promote growth by signaling to their receptor in glial cells and the intestine. Impaired GPA2/GPB5 signaling causes bloating of the intestinal lumen. In addition, mutants lacking thyrostimulin-like signaling show an increased defecation cycle period. Our study suggests that the thyrostimulin GPA2/GPB5 pathway is an ancient enteric neuroendocrine system that regulates intestinal function in ecdysozoans, and may ancestrally have been involved in the control of organismal growth
    corecore