242 research outputs found

    COMPTEL observations of the blazars 3C 454.3 and CTA 102

    Get PDF
    We have analyzed the two blazars of 3C 454.3 and CTA 102 using all available COMPTEL data from 1991 to 1999. In the 10–30 MeV band, emission from the general direction of the sources is found at the 4σ-level, being consistent with contributions from both sources. Below 10 MeV only 3C 454.3 is significantly detected, with the strongest evidence (5.6 σ) in the 3–10 MeV band. Significant flux variability is not observed for both sources, while a low emission is seen most of the years in the 3–10 MeV light curve for 3C 454.3. Its time-averaged MeV spectrum suggests a power maximum between 3 to 10 MeV

    COMPTEL observations of the Virgo blazars 3C 273 and 3C 279

    Get PDF
    We report the main MeV properties (detections, light curves, spectra) of the Virgo blazars 3C 273 and 3C 279 which were derived from a consistent analysis of all COMPTEL Virgo observations between 1991 and 1997

    Extended γ‐ray emission in solar flares

    Get PDF
    During the solar flare events on 11 and 15 June 1991, COMPTEL measured extended emission in the neutron capture line for about 5 hours after the impulsive phase. The time profiles can be described by a double exponential decay with decay constants on the order of 10 min for the fast and 200 min for the slow component. Within the statistical uncertainty both flares show the same long‐term behaviour. The spectrum during the extended phase is significantly harder than during the impulsive phase and pions are not produced in significant numbers before the beginning of the extended emission. Our results with the measurements of others allow us to rule out long‐term trapping of particles in non‐turbulent loops to explain the extended emission of these two flares and our data favour models based on continued acceleration

    COMPTEL Observations of the Gamma-Ray Blazar PKS 1622-297

    Get PDF
    We report results of observations and analyses on the gamma-ray blazar PKS 1622-297, with emphasis on the COMPTEL data (0.75 - 30 MeV) collected between April 1991 and November 1997. PKS 1622-297 was detected as a source of gamma-rays by the EGRET experiment aboard CGRO in 1995 during a gamma-ray outburst at energies above 100 MeV lasting for five weeks. In this time period the blazar was significantly (~ 5.9 sigma) detected by COMPTEL at 10-30 MeV. At lower COMPTEL energies the detection is marginal, resulting in a hard MeV spectrum. The combined COMPTEL/EGRET energy spectrum shows a break at MeV energies. The broad-band spectrum (radio - gamma-rays) shows that the gamma-ray emission dominates the overall power output. On top of the 5-week gamma-ray outburst, EGRET detected a huge flare lasting for > 1 day. Enhanced MeV emission (10 - 30 MeV) is found near the time of this flare, suggesting a possible time delay with respect to the emission above 100 MeV. Outside the 5-week flaring period in 1995, we do not detect MeV emission from PKS 1622-297.Comment: 10 pages including 9 figures, accepted for publication in A&

    Activation in the COMPTEL double-scattering gamma-ray telescope

    Get PDF
    Abstract-The COMPTEL gamma-ray telescope has been operating in low Earth orbit for six years, since the launch of the Compton Gamma-Ray Observatory in April 1991. Comparisons of data for different orbits and epochs show evidence of activation on time scales from minutes (27Mg, q,2=9.5 min) to years C2Na, q&.58 yr). The activation is correlated with both the orbital altitude and solar cosmic-ray modulation. Because it requires coincident measurements in two different detectors, COMPTEL is most susceptible to instrumental background events in which two or more photons are produced simultaneously

    Energetic proton spectra in the 11 June 1991 solar flare

    Get PDF
    The June 11, 1991 gamma-ray flare seen by the Compton Gamma-ray Observatory (CGRO) displays several features that make it a dynamic and rich event. It is a member of a class of long duration gamma-ray events with both 2.223 MeV and greater than 8 MeV emission for hours after the impulsive phase. It also contains an inter-phase between the impulsive and extended phases that presents a challenge to the standard gamma-ray line (GRL) flare picture. This phase has strong 2.223 MeV emission and relatively weak 4.44 MeV emission indicative of a very hard parent proton spectrum. However, this would indicate emission greater than 8 MeV, which is absent from this period. We present the application of new spectroscopy techniques to this phase of the flare in order to present a reasonable explanation for this seemly inconsistent picture

    Gamma ray measurements of the 1991 November 15 solar flare

    Get PDF
    The 1991 November 15 X1.5 flare was a well observed solar event. Comprehensive data from ground-based observatories and spacecraft provide the basis for a contextual interpretation of gamma-ray spectra from the Compton Gamma Ray Observatory (CGRO). In particular, spectral, spatial, and temporal data at several energies are necessary to understand the particle dynamics and the acceleration mechanism(s) within this flare. X-ray images, radio, Ca XIX data and magnetograms provide morphological information on the acceleration region [4,5], while gamma-ray spectral data provide information on the parent ion spectrum. Furthermore, time profiles in hard X-rays and gamma-rays provide valuable information on temporal characteristics of the energetic particles. We report the results of our analysis of the evolution of this flare as a function of energy (∼25 keV–2.5 MeV) and time. These results, together with other high energy data (e.g. from experiments on Yohkoh, Ulysses, and PVO) may assist in identifying and understanding the acceleration mechanism(s) taking place in this event

    COMPTEL 1.8 MeV all sky survey: The Cygnus region

    Get PDF
    We present an updated version of COMPTEL’s 1.809 MeV sky survey. Based on eight years of observations we compare results from different imaging techniques using background from adjacent energy bands. We confirm the previously reported characteristics of the galactic 1.809 MeV emission, specifically an extended galactic ridge emission, mainly concentrated towards the inner galaxy, a peculiar emission feature in the Cygnus region, and a low-intensity ridge extending towards Carina and Vela. Because this gamma ray line is due to the decay of radioactive 26Al, predominantly synthesized in massive stars, one anticipates flux enhancements aligned with regions of recent star formation. This is born out by the observations. In particular the Cygnus feature, first presented in 1996 based on three years of COMPTEL data, is confirmed. Based on the stellar population we distinguish three prominent areas in this region, for which we separately derive fluxes, and discuss interpretations

    COMPTEL upper limits for the 56Co γ-rays from SN1998bu

    Get PDF
    The type Ia supernova SN 1998bu in M96 was observed by COMPTEL for a total of 88 days starting 17 days after the detection of the SN. A special mode improving the low-energy sensitivity was invoked. We obtained images in the 847 keV and 1238 keV lines of 56Co using an improved point-spread function for the low-energies. We do not detect SN1998bu. Sensitive upper limits at both energies constrain the standard supernova model for this event
    corecore