2,314 research outputs found

    Fracton pairing mechanism for "strange" superconductors: Self-assembling organic polymers and copper-oxide compounds

    Full text link
    Self-assembling organic polymers and copper-oxide compounds are two classes of "strange" superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen, Cooper, and Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical model that accounts for the strange superconducting properties of either class of the materials. These properties are considered as interconnected manifestations of the same phenomenon: We argue that superconductivity occurs in the both cases because the charge carriers (i.e., electrons or holes) exchange {\it fracton excitations}, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the strange superconductors. For the copper oxides, the superconducting transition temperature TcT_c as predicted by the fracton mechanism is of the order of ∼150\sim 150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate-induced superconducting phase in the electron-doped polymers, we simultaneously find a rather modest transition temperature of ∼(2−3)\sim (2-3) K owing to the limitations imposed by the electron tunneling processes on a fractal geometry. We speculate that hole-type superconductivity observes larger onset temperatures when compared to its electron-type counterpart. This promises an intriguing possibility of the high-temperature superconducting states in hole-doped complex materials. A specific prediction of the present study is universality of ac conduction for T≳TcT\gtrsim T_c.Comment: 12 pages (including separate abstract page), no figure

    Developing transferable management skills through Action Learning

    Get PDF
    There has been increasing criticism of the relevance of the Master of Business Administration (MBA) in developing skills and competencies. Action learning, devised to address problem-solving in the workplace, offers a potential response to such criticism. This paper offers an insight into one university’s attempt to integrate action learning into the curriculum. Sixty-five part-time students were questioned at two points in their final year about their action learning experience and the enhancement of relevant skills and competencies. Results showed a mixed picture. Strong confirmation of the importance of selected skills and competencies contrasted with weaker agreement about the extent to which these were developed by action learning. There was, nonetheless, a firm belief in the positive impact on the learning process. The paper concludes that action learning is not a panacea but has an important role in a repertoire of educational approaches to develop relevant skills and competencies

    Reflectionless tunneling in ballistic normal-metal--superconductor junctions

    Full text link
    We investigate the phenomenon of reflectionless tunneling in ballistic normal-metal--superconductor (NS) structures, using a semiclassical formalism. It is shown that applied magnetic field and superconducting phase difference both impair the constructive interference leading to this effect, but in a qualitatively different way. This is manifested both in the conductance and in the shot noise properties of the system considered. Unlike diffusive systems, the features of the conductance are sharp, and enable fine spatial control of the current, as well as single channel manipulations. We discuss the possibility of conducting experiments in ballistic semiconductor-superconductor structures with smooth interfaces and some of the phenomena, specific to such structures, that could be measured. A general criterion for the barrier at NS interfaces, though large, to be effectively transparent to pair current is obtained.Comment: published versio

    Universal Intermediate Phases of Dilute Electronic and Molecular Glasses

    Full text link
    Generic intermediate phases with anomalous properties exist over narrow composition ranges adjacent to connectivity transitions. Analysis of both simple classical and complex quantum percolation shows how topological concepts can be used to understand many mysterious properties of high temperature superconductors, including the remarkably similar phase diagrams of La(2-x)SrxCuO4 and C(60+y).Comment: 13 pages, 2 figs., 21 ref

    Dynamics of Quantum Phase Transition in an Array of Josephson Junctions

    Full text link
    We study the dynamics of the Mott insulator-superfluid quantum phase transition in a periodic 1D array of Josephson junctions. We show that crossing the critical point diabatically i.e. at a finite rate with a quench time τQ\tau_Q induces finite quantum fluctuations of the current around the loop proportional to τQ−1/6\tau_Q^{-1/6}. This scaling could be experimentally verified with in array of weakly coupled Bose-Einstein condensates or superconducting grains.Comment: 4 pages in RevTex, 3 .eps figures; 2 references added; accepted for publication in Phys.Rev.Let

    Double Field Theory Formulation of Heterotic Strings

    Full text link
    We extend the recently constructed double field theory formulation of the low-energy theory of the closed bosonic string to the heterotic string. The action can be written in terms of a generalized metric that is a covariant tensor under O(D,D+n), where n denotes the number of gauge vectors, and n additional coordinates are introduced together with a covariant constraint that locally removes these new coordinates. For the abelian subsector, the action takes the same structural form as for the bosonic string, but based on the enlarged generalized metric, thereby featuring a global O(D,D+n) symmetry. After turning on non-abelian gauge couplings, this global symmetry is broken, but the action can still be written in a fully O(D,D+n) covariant fashion, in analogy to similar constructions in gauged supergravities.Comment: 28 pages, v2: minor changes, version published in JHE

    Managing affect in learners' questions in undergraduate science

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Society for Research into Higher Education.This article aims to position students' classroom questioning within the literature surrounding affect and its impact on learning. The article consists of two main sections. First, the act of questioning is discussed in order to highlight how affect shapes the process of questioning, and a four-part genesis to question-asking that we call CARE is described: the construction, asking, reception and evaluation of a learner's question. This work is contextualised through studies in science education and through our work with university students in undergraduate chemistry, although conducted in the firm belief that it has more general application. The second section focuses on teaching strategies to encourage and manage learners' questions, based here upon the conviction that university students in this case learn through questioning, and that an inquiry-based environment promotes better learning than a simple ‘transmission’ setting. Seven teaching strategies developed from the authors' work are described, where university teachers ‘scaffold’ learning through supporting learners' questions, and working with these to structure and organise the content and the shape of their teaching. The article concludes with a summary of the main issues, highlighting the impact of the affective dimension of learning through questioning, and a discussion of the implications for future research

    Re-Focusing - Building a Future for Entrepreneurial Education & Learning

    Get PDF
    The field of entrepreneurship has struggled with fundamental questions concerning the subject’s nature and purpose. To whom and to what means are educational and training agendas ultimately directed? Such questions have become of central importance to policy makers, practitioners and academics alike. There are suggestions that university business schools should engage more critically with the lived experiences of practising entrepreneurs through alternative pedagogical approaches and methods, seeking to account for and highlighting the social, political and moral aspects of entrepreneurial practice. In the UK, where funding in higher education has become increasingly dependent on student fees, there are renewed pressures to educate students for entrepreneurial practice as opposed to educating them about the nature and effects of entrepreneurship. Government and EU policies are calling on business schools to develop and enhance entrepreneurial growth and skill sets, to make their education and training programmes more proactive in providing innovative educational practices which help and facilitate life experiences and experiential learning. This paper makes the case for critical frameworks to be applied so that complex social processes become a source of learning for educators and entrepreneurs and so that innovative pedagogical approaches can be developed in terms both of context (curriculum design) and process (delivery methods)

    Quantal phases, disorder effects and superconductivity in spin-Peierls systems

    Full text link
    In view of recent developments in the investigation on cuprate high-Tc{}_{\rm c} superconductors and the spin-Peierls compound CuGeO3{}_{3}, we study the effect of dilute impurity doping on the spin-Peierls state in quasi-one dimensional systems. We identify a common origin for the emergence of antiferromagnetic order upon the introduction of static vacancies, and superconductivity for mobile holes.Comment: 4 pages revtex; revised versio
    • …
    corecore