147 research outputs found

    Metrology of EUV Masks by EUV-Scatterometry and Finite Element Analysis

    Full text link
    Extreme ultraviolet (EUV) lithography is seen as a main candidate for production of future generation computer technology. Due to the short wavelength of EUV light (around 13 nm) novel reflective masks have to be used in the production process. A prerequisite to meet the high quality requirements for these EUV masks is a simple and accurate method for absorber pattern profile characterization. In our previous work we demonstrated that the Finite Element Method (FEM) is very well suited for the simulation of EUV scatterometry and can be used to reconstruct EUV mask profiles from experimental scatterometric data. In this contribution we apply an indirect metrology method to periodic EUV line masks with different critical dimensions (140 nm and 540 nm) over a large range of duty cycles (1:2, ..., 1:20). We quantitatively compare the reconstructed absorber pattern parameters to values obtained from direct AFM and CD-SEM measurements. We analyze the reliability of the reconstruction for the given experimental data. For the CD of the absorber lines, the comparison shows agreement of the order of 1nm. Furthermore we discuss special numerical techniques like domain decomposition algorithms and high order finite elements and their importance for fast and accurate solution of the inverse problem.Comment: Photomask Japan 2008 / Photomask and Next-Generation Lithography Mask Technology X

    Rigorous FEM-Simulation of EUV-Masks: Influence of Shape and Material Parameters

    Get PDF
    We present rigorous simulations of EUV masks with technological imperfections like side-wall angles and corner roundings. We perform an optimization of two different geometrical parameters in order to fit the numerical results to results obtained from experimental scatterometry measurements. For the numerical simulations we use an adaptive finite element approach on irregular meshes. This gives us the opportunity to model geometrical structures accurately. Moreover we comment on the use of domain decomposition techniques for EUV mask simulations. Geometric mask parameters have a great influence on the diffraction pattern. We show that using accurate simulation tools it is possible to deduce the relevant geometrical parameters of EUV masks from scatterometry measurements. This work results from a collaboration between Advanced Mask Technology Center (AMTC, mask fabrication), Physikalisch-Technische Bundesanstalt (PTB, scatterometry), Zuse Institute Berlin (ZIB), and JCMwave (numerical simulation).Comment: 8 pages, 8 figures (see original publication for images with a better resolution

    Why do inverse models disagree? A case study with two European CO2 inversions

    Get PDF
    We present an analysis of atmospheric transport impact on estimating CO2 fluxes using two atmospheric inversion systems (CarboScope-Regional (CSR) and Lund University Modular Inversion Algorithm (LUMIA)) over Europe in 2018. The main focus of this study is to quantify the dominant drivers of spread amid CO2 estimates derived from atmospheric tracer inversions. The Lagrangian transport models STILT (Stochastic Time-Inverted Lagrangian Transport) and FLEXPART (FLEXible PARTicle) were used to assess the impact of mesoscale transport. The impact of lateral boundary conditions for CO2 was assessed by using two different estimates from the global inversion systems CarboScope (TM3) and TM5-4DVAR. CO2 estimates calculated with an ensemble of eight inversions differing in the regional and global transport models, as well as the inversion systems, show a relatively large spread for the annual fluxes, ranging between −0.72 and 0.20 PgC yr−1, which is larger than the a priori uncertainty of 0.47 PgC yr−1. The discrepancies in annual budget are primarily caused by differences in the mesoscale transport model (0.51 PgC yr−1), in comparison with 0.23 and 0.10 PgC yr−1 that resulted from the far-field contributions and the inversion systems, respectively. Additionally, varying the mesoscale transport caused large discrepancies in spatial and temporal patterns, while changing the lateral boundary conditions led to more homogeneous spatial and temporal impact. We further investigated the origin of the discrepancies between transport models. The meteorological forcing parameters (forecasts versus reanalysis obtained from ECMWF data products) used to drive the transport models are responsible for a small part of the differences in CO2 estimates, but the largest impact seems to come from the transport model schemes. Although a good convergence in the differences between the inversion systems was achieved by applying a strict protocol of using identical prior fluxes and atmospheric datasets, there was a non-negligible impact arising from applying a different inversion system. Specifically, the choice of prior error structure accounted for a large part of system-to-system differences.</p

    A multistratigraphic approach to pinpoint the Permian-Triassic boundary in continental depositsThe Zechstein–Lower Buntsandstein transition in Germany

    Get PDF
    © 2017 Elsevier B.V.The Central European Basin is very suitable for high-resolution multistratigraphy of Late Permian to Early Triassic continental deposits. Here the well exposed continuous transition of the lithostratigraphic Zechstein and Buntsandstein Groups of Central Germany was studied for isotope-chemostratigraphy (ÎŽ13Corg, ÎŽ13Ccarb, ÎŽ18Ocarb), major and trace element geochemistry, magnetostratigraphy, palynology, and conchostracan biostratigraphy. The analysed material was obtained from both classical key sections (abandoned Nelben clay pit, Caaschwitz quarries, Thale railway cut, abandoned Heinebach clay pit) and a recent drill core section (Caaschwitz 6/2012) spanning the Permian-Triassic boundary. The Zechstein–Buntsandstein transition of Central Germany consists of a complex sedimentary facies comprising sabkha, playa lake, aeolian, and fluvial deposits of predominantly red-coloured siliciclastics and intercalations of lacustrine oolitic limestones. The new data on ÎŽ13Corg range from − 28.7 to − 21.7 ‰ showing multiple excursions. Most prominent negative shifts correlate with intercalations of oolites and grey-coloured clayey siltstones, while higher ÎŽ13Corg values correspond to an onset of palaeosol overprint. The ÎŽ13Ccarb values range from − 9.7 to − 1.3 ‰ with largest variations recorded in dolomitic nodules from the Zechstein Group. In contrast to sedimentary facies shifts across the Zechstein-Buntsandstein boundary, major element values used as a proxy (CIA, CIA*, CIA-K) for weathering conditions indicate climatic stability. Trace element data used for a geochemical characterization of the Late Permian to Early Triassic transition in Central Germany indicate a decrease in Rb contents at the Zechstein-Buntsandstein boundary. New palynological data obtained from the Caaschwitz quarry section reveal occurrences of Late Permian palynomorphs in the Lower Fulda Formation, while Early Triassic elements were recorded in the upper part of the Upper Fulda Formation. The present study confirms an onset of a normal-polarized magnetozone in the Upper Fulda Formation of the Caaschwitz quarry section supporting an interregional correlation of this crucial stratigraphic interval with the normal magnetic polarity of the basal Early Triassic known from marine sections in other regions. Based on a synthesis of the multistratigraphic data, the Permian-Triassic boundary is proposed to be placed in the lower part of the Upper Fulda Formation, which is biostratigraphically confirmed by the first occurrence date of the Early Triassic Euestheria gutta-Palaeolimnadiopsis vilujensis conchostracan fauna. Rare records of conchostracans reported from the siliciclastic deposits of the lower to middle Zechstein Group may point to its potential for further biostratigraphic subdivision of the Late Permian continental deposits

    Grouping of endocrine disrupting chemicals for mixture risk assessment – Evidence from a rat study

    Get PDF
    Exposure to mixtures of endocrine disrupting chemicals may contribute to the rising incidence of hormone-related diseases in humans. Real-life mixtures are complex, comprised of chemicals with mixed modes of action, and essential knowledge is often lacking on how to group such chemicals into cumulative assessment groups, which is an essential prerequisite to conduct a chemical mixture risk assessment. We investigated if mixtures of chemicals with diverse endocrine modes of action can cause mixture effects on hormone sensitive endpoints in developing and adult rat offspring after perinatal exposure. Wistar rats were exposed during pregnancy and lactation simultaneously to either bisphenol A and butylparaben (Emix), diethylhexyl phthalate and procymidone (Amix), or a mixture of all four substances (Totalmix). In male offspring, the anogenital distance was significantly reduced and nipple retention increased in animals exposed to Amix and Totalmix, and the mixture effects were well approximated by the dose addition model. The combination of Amix and Emix responded with more marked changes on these and other endocrine-sensitive endpoints than each binary mixture on its own. Sperm counts were reduced by all exposures. These experimental outcomes suggest that the grouping of chemicals for mixture risk assessment should be based on common health outcomes rather than only similar modes or mechanisms of action. Mechanistic-based approaches such as the concept of Adverse Outcome Pathway (AOP) can provide important guidance if both the information on shared target tissues and the information on shared mode/mechanism of action are taken into account.Danish Environmental Protection Agency, Denmar

    Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals

    Get PDF
    Developmental neurotoxicity (DNT) is a major safety concern for all chemicals of the human exposome. However, DNT data from animal studies are available for only a small percentage of manufactured compounds. Test methods with a higher throughput than current regulatory guideline methods, and with improved human relevance are urgently needed. We therefore explored the feasibility of DNT hazard assessment based on new approach methods (NAMs). An in vitro battery (IVB) was assembled from ten individual NAMs that had been developed during the past years to probe effects of chemicals on various fundamental neurodevelopmental processes. All assays used human neural cells at different developmental stages. This allowed us to assess disturbances of: (i) proliferation of neural progenitor cells (NPC); (ii) migration of neural crest cells, radial glia cells, neurons and oligodendrocytes; (iii) differentiation of NPC into neurons and oligodendrocytes; and (iv) neurite outgrowth of peripheral and central neurons. In parallel, cytotoxicity measures were obtained. The feasibility of concentration-dependent screening and of a reliable biostatistical processing of the complex multi-dimensional data was explored with a set of 120 test compounds, containing subsets of pre-defined positive and negative DNT compounds. The battery provided alerts (hit or borderline) for 24 of 28 known toxicants (82% sensitivity), and for none of the 17 negative controls. Based on the results from this screen project, strategies were developed on how IVB data may be used in the context of risk assessment scenarios employing integrated approaches for testing and assessment (IATA).European Food Safety Authority (EFSA-Q-2018-00308), the Danish Environmental Protection Agency (EPA), Denmark, under the grant number MST-667-00205, the State Ministry of Baden-Wuerttemberg, Germany, for Economic Affairs, Labour and Tourism (NAM-Accept), the project CERST (Center for Alternatives to Animal Testing) of the Ministry for culture and science of the State of North-Rhine Westphalia, Germany (file number 233–1.08.03.03- 121972/131–1.08.03.03–121972), the European Chemical Industry Council Long-Range Research Initiative (Cefic LRI) under the project name AIMT11 and the BMBF (NeuroTool). It has also received funding from the European Union's Horizon 2020 research and innovation program under grant agreements No. 964537 (RISK-HUNT3R), No. 964518 (ToxFree), No. 101057014 (PARC) and No. 825759 (ENDpoiNTs)

    Testing variational estimation of process parameters and initial conditions of an earth system model

    Get PDF
    We present a variational assimilation system around a coarse resolution Earth System Model (ESM) and apply it for estimating initial conditions and parameters of the model. The system is based on derivative information that is efficiently provided by the ESM's adjoint, which has been generated through automatic differentiation of the model's source code. In our variational approach, the length of the feasible assimilation window is limited by the size of the domain in control space over which the approximation by the derivative is valid. This validity domain is reduced by non-smooth process representations. We show that in this respect the ocean component is less critical than the atmospheric component. We demonstrate how the feasible assimilation window can be extended to several weeks by modifying the implementation of specific process representations and by switching off processes such as precipitation

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990-2018

    Get PDF
    Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990-2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011-2015, the CO2 land sources and sinks from NGHGI estimates report-90 Tg C yr-1 ± 30 Tg C yr-1 while all other BU approaches report a mean sink of-98 Tg C yr-1 (± 362 Tg of C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger spread for regional inversions (i.e., mean of 253 Tg C yr-1 ± 400 Tg C yr-1). This concludes that (a) current independent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification because of model differences and probably also because of the definition of "CO2 flux"obtained from different approaches. The referenced datasets related to figures are visualized. © 2021 Ana Maria Roxana Petrescu et al

    Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of metabolic syndrome in patients with hypertension significantly increases the risk of cardiovascular disease, type 2 diabetes and mortality. Our aim is to estimate the epidemiological and economic burden to the health service of metabolic syndrome in patients with hypertension in three European countries in 2008 and 2020.</p> <p>Methods</p> <p>An age, sex and risk group structured prevalence based cost of illness model was developed using the United States Adult Treatment Panel III of the National Cholesterol Education Program criteria to define metabolic syndrome. Data sources included published information and public use databases on disease prevalence, incidence of cardiovascular events, prevalence of type 2 diabetes, treatment patterns and cost of management in Germany, Spain and Italy.</p> <p>Results</p> <p>The prevalence of hypertension with metabolic syndrome in the general population of Germany, Spain and Italy was 36%, 11% and 10% respectively. In subjects with hypertension 61%, 22% and 21% also had metabolic syndrome. Incident cardiovascular events and attributable mortality were around two fold higher in subjects with metabolic syndrome and prevalence of type 2 diabetes was around six-fold higher. The economic burden to the health service of metabolic syndrome in patients with hypertension was been estimated at €24,427, €1,900 and €4,877 million in Germany, Spain and Italy and forecast to rise by 59%, 179% and 157% respectively by 2020. The largest components of costs included the management of prevalent type 2 diabetes and incident cardiovascular events. Mean annual costs per hypertensive patient were around three-fold higher in subjects with metabolic syndrome compared to those without and rose incrementally with the additional number of metabolic syndrome components present.</p> <p>Conclusion</p> <p>The presence of metabolic syndrome in patients with hypertension significantly inflates economic burden and costs are likely to increase in the future due to an aging population and an increase in the prevalence of components of metabolic syndrome.</p
    • 

    corecore