99 research outputs found
Connes' embedding problem and Tsirelson's problem
We show that Tsirelson's problem concerning the set of quantum correlations
and Connes' embedding problem on finite approximations in von Neumann algebras
(known to be equivalent to Kirchberg's QWEP conjecture) are essentially
equivalent. Specifically, Tsirelson's problem asks whether the set of bipartite
quantum correlations generated between tensor product separated systems is the
same as the set of correlations between commuting C*-algebras. Connes'
embedding problem asks whether any separable II factor is a subfactor of
the ultrapower of the hyperfinite II factor. We show that an affirmative
answer to Connes' question implies a positive answer to Tsirelson's.
Conversely, a positve answer to a matrix valued version of Tsirelson's problem
implies a positive one to Connes' problem
Non-locality of non-Abelian anyons
Topological systems, such as fractional quantum Hall liquids, promise to
successfully combat environmental decoherence while performing quantum
computation. These highly correlated systems can support non-Abelian anyonic
quasiparticles that can encode exotic entangled states. To reveal the non-local
character of these encoded states we demonstrate the violation of suitable Bell
inequalities. We provide an explicit recipe for the preparation, manipulation
and measurement of the desired correlations for a large class of topological
models. This proposal gives an operational measure of non-locality for anyonic
states and it opens up the possibility to violate the Bell inequalities in
quantum Hall liquids or spin lattices.Comment: 7 pages, 3 figure
Experimental simulation and limitations of quantum walks with trapped ions
We examine the prospects of discrete quantum walks (QWs) with trapped ions.
In particular, we analyze in detail the limitations of the protocol of
Travaglione and Milburn (PRA 2002) that has been implemented by several
experimental groups in recent years. Based on the first realization in our
group (PRL 2009), we investigate the consequences of leaving the scope of the
approximations originally made, such as the Lamb--Dicke approximation. We
explain the consequential deviations from the idealized QW for different
experimental realizations and an increasing number of steps by taking into
account higher-order terms of the quantum evolution. It turns out that these
become dominant after a few steps already, which is confirmed by experimental
results and is currently limiting the scalability of this approach. Finally, we
propose a new scheme using short laser pulses, derived from a protocol from the
field of quantum computation. We show that the new scheme is not subject to the
above-mentioned restrictions, and analytically and numerically evaluate its
limitations, based on a realistic implementation with our specific setup.
Implementing the protocol with state-of-the-art techniques should allow for
substantially increasing the number of steps to 100 and beyond and should be
extendable to higher-dimensional QWs.Comment: 29 pages, 15 figue
The Sheaf-Theoretic Structure Of Non-Locality and Contextuality
We use the mathematical language of sheaf theory to give a unified treatment
of non-locality and contextuality, in a setting which generalizes the familiar
probability tables used in non-locality theory to arbitrary measurement covers;
this includes Kochen-Specker configurations and more. We show that
contextuality, and non-locality as a special case, correspond exactly to
obstructions to the existence of global sections. We describe a linear
algebraic approach to computing these obstructions, which allows a systematic
treatment of arguments for non-locality and contextuality. We distinguish a
proper hierarchy of strengths of no-go theorems, and show that three leading
examples --- due to Bell, Hardy, and Greenberger, Horne and Zeilinger,
respectively --- occupy successively higher levels of this hierarchy. A general
correspondence is shown between the existence of local hidden-variable
realizations using negative probabilities, and no-signalling; this is based on
a result showing that the linear subspaces generated by the non-contextual and
no-signalling models, over an arbitrary measurement cover, coincide. Maximal
non-locality is generalized to maximal contextuality, and characterized in
purely qualitative terms, as the non-existence of global sections in the
support. A general setting is developed for Kochen-Specker type results, as
generic, model-independent proofs of maximal contextuality, and a new
combinatorial condition is given, which generalizes the `parity proofs'
commonly found in the literature. We also show how our abstract setting can be
represented in quantum mechanics. This leads to a strengthening of the usual
no-signalling theorem, which shows that quantum mechanics obeys no-signalling
for arbitrary families of commuting observables, not just those represented on
different factors of a tensor product.Comment: 33 pages. Extensively revised, new results included. Published in New
Journal of Physic
HCC recurrence in HCV-infected patients after liver transplantation: SiLVER Study reveals benefits of sirolimus in combination with CNIs - a post-hoc analysis
Factors affecting outcomes in liver transplant (LTx) recipients with hepatocellular carcinoma (HCC) and hepatitis C viral (HCV) infection include the choice of immunosuppression. Here, we analyzed the HCV+ subgroup of patients from the randomized controlled, international SiLVER Study. We performed a post hoc analysis of 166 HCV+ SiLVER Study patients regarding HCC outcome after LTx. Control patients (group A: n = 88) received mTOR inhibitor (mTORi)-free, calcineurin inhibitor (CNI)-based versus sirolimus-based immunosuppression (group B: n = 78). We found no significant difference regarding HCV-RNA titers between group A and B. Since no effect in group B could be due to variable sirolimus dosing, we split group B into patients receiving sirolimus-based immunosuppression + CNIs for >50% (B1; n = 44) or <50% (B2; n = 34) of the time. While there remained no difference in HCV-RNA titer between groups, HCC recurrence-free survival in group B1 (81.8%) was markedly better versus both group A (62.7%; P = 0.0136) and group B2 (64.7%; P = 0.0326); Interestingly, further subgroup analysis revealed an increase (P = 0.0012) in liver enzyme values in group B2. Taken together, in HCV-infected patients with HCC and LTx, mTORi immunosuppression + CNIs yields excellent outcomes. Unexpectedly, higher levels of liver inflammation and poorer outcomes occur with mTORi monotherapy in the HCV+ subgroup
Evaluating model outputs using integrated global speleothem records of climate change since the last glacial
Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for dataâmodel comparisons. Here, we illustrate this using 456 globally distributed speleothem ÎŽ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if dataâmodel comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on ÎŽ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices
Ionic liquids at electrified interfaces
Until recently, âroom-temperatureâ (<100â150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)â(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of âfirst-generationâ room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the âlater generationâ RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in âcocktailsâ of oneâs choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost âuniversalâ solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) âsister-systemsâ.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules
Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events
Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors
Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation
In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X
- âŠ