10 research outputs found

    IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells

    Get PDF
    Summary: Interleukin-38 (IL-38) is a cytokine of the IL-1 family with a role in chronic inflammation. However, its main cellular targets and receptors remain obscure. IL-38 is highly expressed in the skin and downregulated in psoriasis patients. We report an investigation in cellular targets of IL-38 during the progression of imiquimod-induced psoriasis. In this model, IL-38 knockout (IL-38 KO) mice show delayed disease resolution with exacerbated IL-17-mediated inflammation, which is reversed by the administration of mature IL-38 or γδ T cell-receptor-blocking antibodies. Mechanistically, X-linked IL-1 receptor accessory protein-like 1 (IL1RAPL1) is upregulated upon γδ T cell activation to feedforward-amplify IL-17 production and is required for IL-38 to suppress γδ T cell IL-17 production. Accordingly, psoriatic IL1RAPL1 KO mice show reduced inflammation and IL-17 production by γδ T cells. Our findings indicate a role for IL-38 in the regulation of γδ T cell activation through IL1RAPL1, with consequences for auto-inflammatory disease. : Han et al. report that genetic depletion of IL-38 in mice delays the resolution of imiquimod-induced psoriasis by increasing the production of the inflammatory cytokine IL-17A by skin-infiltrating T cells. Depleting these T cells or the receptor that is targeted by IL-38 reduces psoriatic skin inflammation. Keywords: IL-38, IL1RAPL1, IL-17, γδ T cells, psoriasis, inflammatio

    Salt induction and activation of MtlD, the key enzyme in the synthesis of the compatible solute mannitol in Acinetobacter baumannii

    No full text
    Mannitol is the major compatible solute, next to glutamate, synthesized by the opportunistic human pathogen Acinetobacter baumannii under low water activities. The key enzyme for mannitol biosynthesis, MtlD, was identified. MtlD is highly similar to the bifunctional mannitol‐1‐phosphate dehydrogenase/phosphatase from Acinetobacter baylyi. After deletion of the mtlD gene from A. baumannii ATCC 19606T cells no longer accumulated mannitol and growth was completely impaired at high salt. Addition of glycine betaine restored growth, demonstrating that mannitol is an important compatible solute in the human pathogen. MtlD was heterologously produced and purified. Enzyme activity was strictly salt dependent. Highest stimulation was reached at 600 mmol/L NaCl. Addition of different sodium as well as potassium salts restored activity, with highest stimulations up to 41 U/mg protein by sodium glutamate. In contrast, an increase in osmolarity by addition of sugars did not restore activity. Regulation of mannitol synthesis was also assayed at the transcriptional level. Reporter gene assays revealed that expression of mtlD is strongly dependent on high osmolarity, not discriminating between different salts or sugars. The presence of glycine betaine or its precursor choline repressed promoter activation. These data indicate a dual regulation of mannitol production in A. baumannii, at the transcriptional and the enzymatic level, depending on high osmolarity

    uORF-Tools-Workflow for the determination of translation-regulatory upstream open reading frames.

    No full text
    Ribosome profiling (ribo-seq) provides a means to analyze active translation by determining ribosome occupancy in a transcriptome-wide manner. The vast majority of ribosome protected fragments (RPFs) resides within the protein-coding sequence of mRNAs. However, commonly reads are also found within the transcript leader sequence (TLS) (aka 5' untranslated region) preceding the main open reading frame (ORF), indicating the translation of regulatory upstream ORFs (uORFs). Here, we present a workflow for the identification of translation-regulatory uORFs. Specifically, uORF-Tools uses Ribo-TISH to identify uORFs within a given dataset and generates a uORF annotation file. In addition, a comprehensive human uORF annotation file, based on 35 ribo-seq files, is provided, which can serve as an alternative input file for the workflow. To assess the translation-regulatory activity of the uORFs, stimulus-induced changes in the ratio of the RPFs residing in the main ORFs relative to those found in the associated uORFs are determined. The resulting output file allows for the easy identification of candidate uORFs, which have translation-inhibitory effects on their associated main ORFs. uORF-Tools is available as a free and open Snakemake workflow at https://github.com/Biochemistry1-FFM/uORF-Tools. It is easily installed and all necessary tools are provided in a version-controlled manner, which also ensures lasting usability. uORF-Tools is designed for intuitive use and requires only limited computing times and resources

    uORF-tools—workflow for the determination of translation-regulatory upstream open reading frames

    No full text
    Ribosome profiling (ribo-seq) provides a means to analyze active translation by determining ribosome occupancy in a transcriptome-wide manner. The vast majority of ribosome protected fragments (RPFs) resides within the protein-coding sequence of mRNAs. However, commonly reads are also found within the transcript leader sequence (TLS) (aka 5’ untranslated region) preceding the main open reading frame (ORF), indicating the translation of regulatory upstream ORFs (uORFs). Here, we present a workflow for the identification of translation-regulatory uORFs. Specifically, uORF-Tools uses Ribo-TISH to identify uORFs within a given dataset and generates a uORF annotation file. In addition, a comprehensive human uORF annotation file, based on 35 ribo-seq files, is provided, which can serve as an alternative input file for the workflow. To assess the translation-regulatory activity of the uORFs, stimulus-induced changes in the ratio of the RPFs residing in the main ORFs relative to those found in the associated uORFs are determined. The resulting output file allows for the easy identification of candidate uORFs, which have translation-inhibitory effects on their associated main ORFs. uORF-Tools is available as a free and open Snakemake workflow at https://github.com/Biochemistry1-FFM/uORF-Tools. It is easily installed and all necessary tools are provided in a version-controlled manner, which also ensures lasting usability. uORF-Tools is designed for intuitive use and requires only limited computing times and resources

    Macrophages attenuate the transcription of CYP1A1 in breast tumor cells and enhance their proliferation

    No full text
    While aberrant cells are routinely recognized and removed by immune cells, tumors eventually escape innate immune responses. Infiltrating immune cells are even corrupted by the tumor to acquire a tumor-supporting phenotype. In line, tumor-associated macrophages are well-characterized to promote tumor progression and high levels of tumor-infiltrating macrophages are a poor prognostic marker in breast cancer. Here, we aimed to further decipher the influence of macrophages on breast tumor cells and determined global gene expression changes in three-dimensional tumor spheroids upon infiltration of macrophages. While various tumor-associated mRNAs were upregulated, expression of the cytochrome P450 family member CYP1A1 was markedly attenuated. Repression of CYP1A1 in tumor cells was elicited by a macrophage-shaped tumor microenvironment rather than by direct tumor cell-macrophage contacts. In line with changes in RNA expression profiles, macrophages enhanced proliferation of the tumor cells. Enhanced proliferation and macrophage presence further correlated with reduced CYP1A1 expression in patient tumors when compared with normal tissue. These findings are of interest in the context of combinatory therapeutic approaches involving cytotoxic and immune-modulatory compounds

    Macrophages attenuate the transcription of CYP1A1 in breast tumor cells and enhance their proliferation.

    No full text
    While aberrant cells are routinely recognized and removed by immune cells, tumors eventually escape innate immune responses. Infiltrating immune cells are even corrupted by the tumor to acquire a tumor-supporting phenotype. In line, tumor-associated macrophages are well-characterized to promote tumor progression and high levels of tumor-infiltrating macrophages are a poor prognostic marker in breast cancer. Here, we aimed to further decipher the influence of macrophages on breast tumor cells and determined global gene expression changes in three-dimensional tumor spheroids upon infiltration of macrophages. While various tumor-associated mRNAs were upregulated, expression of the cytochrome P450 family member CYP1A1 was markedly attenuated. Repression of CYP1A1 in tumor cells was elicited by a macrophage-shaped tumor microenvironment rather than by direct tumor cell-macrophage contacts. In line with changes in RNA expression profiles, macrophages enhanced proliferation of the tumor cells. Enhanced proliferation and macrophage presence further correlated with reduced CYP1A1 expression in patient tumors when compared with normal tissue. These findings are of interest in the context of combinatory therapeutic approaches involving cytotoxic and immune-modulatory compounds

    A high-resolution map of functional miR-181 response elements in the thymus reveals the role of coding sequence targeting and an alternative seed match

    No full text
    MicroRNAs (miRNAs) are critical post-transcriptional regulators in many biological processes. They act by guiding RNA-induced silencing complexes to miRNA response elements (MREs) in target mRNAs, inducing translational inhibition and/or mRNA degradation. Functional MREs are expected to predominantly occur in the 3' untranslated region and involve perfect base-pairing of the miRNA seed. Here, we generate a high-resolution map of miR-181a/b-1 (miR-181) MREs to define the targeting rules of miR-181 in developing murine T-cells. By combining a multi-omics approach with computational high-resolution analyses, we uncover novel miR-181 targets and demonstrate that miR-181 acts predominantly through RNA destabilization. Importantly, we discover an alternative seed match and identify a distinct set of targets with repeat elements in the coding sequence which are targeted by miR-181 and mediate translational inhibition. In conclusion, deep profiling of MREs in primary cells is critical to expand physiologically relevant targetomes and establish context-dependent miRNA targeting rules

    Functional dominance of CHIP-mutated hematopoietic stem cells in patients undergoing autologous transplantation

    No full text
    Clonal hematopoiesis of indeterminate potential (CHIP) is caused by recurrent somatic mutations leading to clonal blood cell expansion. However, direct evidence of the fitness of CHIP-mutated human hematopoietic stem cells (HSCs) in blood reconstitution is lacking. Because myeloablative treatment and transplantation enforce stress on HSCs, we followed 81 patients with solid tumors or lymphoid diseases undergoing autologous stem cell transplantation (ASCT) for the development of CHIP. We found a high incidence of CHIP (22%) after ASCT with a high mean variant allele frequency (VAF) of 10.7%. Most mutations were already present in the graft, albeit at lower VAFs, demonstrating a selective reconstitution advantage of mutated HSCs after ASCT. However, patients with CHIP mutations in DNA-damage response genes showed delayed neutrophil reconstitution. Thus, CHIP-mutated stem and progenitor cells largely gain on clone size upon ASCT-related blood reconstitution, leading to an increased future risk of CHIP-associated complications
    corecore