1,522 research outputs found

    The Hazen Mammoth (Mammuthus columbi), Prairie County, Arkansas

    Get PDF
    In May 1965, mammoth remains were exposed during the excavation of a borrow pit for construction of Interstate Highway 40, 2 mi northeast of Hazen, Prairie County, Arkansas. The proboscidian remains consisted of a skull with tusks, mandibles, atlas and other skeletal elements. The vertebra material was scattered over approximately 150 m (1,600 sq ft) but was confined to a layer of red clayey-silt 6.7 m (22 ft) below the surface. No additional fauna or flora was recovered. The mammoth remains are referred to Mammuthus columbi (Falconer, 1857) on the basis of characteristics of the dentition, particularly the comparison of index of hypsodonty to functional plate density. Mammuthus columbi was widely distributed in southeast North America during the late part of the Pleistocene Epoch (Sangamon-Wisconsin Stages)

    Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space

    Full text link
    We solve explicitly the two-dimensional harmonic oscillator and the harmonic oscillator in a background magnetic field in noncommutative phase-space without making use of any type of representation. A key observation that we make is that for a specific choice of the noncommutative parameters, the time reversal symmetry of the systems get restored since the energy spectrum becomes degenerate. This is in contrast to the noncommutative configuration space where the time reversal symmetry of the harmonic oscillator is always broken.Comment: 7 pages Late

    Generalized barker sequences

    Get PDF
    Correlation functions for binary digital systems - binary code and vector analysi

    Hyperfine splitting in noncommutative spaces

    Full text link
    We study the hyperfine splitting in the framework of the noncommutative quantum mechanics (NCQM) developed in the literature. The results show deviations from the usual quantum mechanics. We show that the energy difference between two excited F = I + 1/2 and the ground F = I - 1/2 states in a noncommutative space (NCS) is bigger than the one in the commutative case, so the radiation wavelength in NCSs must be shorter than the radiation wavelength in commutative spaces. We also find an upper bound for the noncommutativity parameter.Comment: No figure

    Formulation, Interpretation and Application of non-Commutative Quantum Mechanics

    Full text link
    In analogy with conventional quantum mechanics, non-commutative quantum mechanics is formulated as a quantum system on the Hilbert space of Hilbert-Schmidt operators acting on non-commutative configuration space. It is argued that the standard quantum mechanical interpretation based on Positive Operator Valued Measures, provides a sufficient framework for the consistent interpretation of this quantum system. The implications of this formalism for rotational and time reversal symmetry are discussed. The formalism is applied to the free particle and harmonic oscillator in two dimensions and the physical signatures of non commutativity are identified.Comment: 11 page

    Spectrum of the non-commutative spherical well

    Get PDF
    We give precise meaning to piecewise constant potentials in non-commutative quantum mechanics. In particular we discuss the infinite and finite non-commutative spherical well in two dimensions. Using this, bound-states and scattering can be discussed unambiguously. Here we focus on the infinite well and solve for the eigenvalues and eigenfunctions. We find that time reversal symmetry is broken by the non-commutativity. We show that in the commutative and thermodynamic limits the eigenstates and eigenfunctions of the commutative spherical well are recovered and time reversal symmetry is restored

    Non-commutative Quantum Mechanics in Three Dimensions and Rotational Symmetry

    Full text link
    We generalize the formulation of non-commutative quantum mechanics to three dimensional non-commutative space. Particular attention is paid to the identification of the quantum Hilbert space in which the physical states of the system are to be represented, the construction of the representation of the rotation group on this space, the deformation of the Leibnitz rule accompanying this representation and the implied necessity of deforming the co-product to restore the rotation symmetry automorphism. This also implies the breaking of rotational invariance on the level of the Schroedinger action and equation as well as the Hamiltonian, even for rotational invariant potentials. For rotational invariant potentials the symmetry breaking results purely from the deformation in the sense that the commutator of the Hamiltonian and angular momentum is proportional to the deformation.Comment: 21 page

    Variations on the Planar Landau Problem: Canonical Transformations, A Purely Linear Potential and the Half-Plane

    Get PDF
    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well
    corecore