1,002 research outputs found

    A Pilot Using OverDrive: E-lending in Academic Law Libraries

    Get PDF
    E-books are not just for popular reading; legal publishers are entering the e-book market as well. Major publishers are launching e-book platforms and offering law libraries the opportunity to purchase both individual titles and collections of electronic books that they also offer in print. With increasing signs of a strong future for e-books, and possibly for e-lending as well, in spring 2012 Cornell Law Library decided to pilot OverDrive for the Cornell Law School community. By embarking on a pilot of the OverDrive service, we could test the waters of e-lending in a cost-efficient way that would not be prohibitive in terms of staff time and library resources. As consumers become more accustomed to e-books in general and e-lending specifically, our law school users are likely to expect their materials to be available similarly—and legal academic publishers are already showing signs of responding. Cornell University Law Library’s e-lending pilot shows that the law school community is open to this new model of access and lending

    Non-commutative Quantum Mechanics in Three Dimensions and Rotational Symmetry

    Full text link
    We generalize the formulation of non-commutative quantum mechanics to three dimensional non-commutative space. Particular attention is paid to the identification of the quantum Hilbert space in which the physical states of the system are to be represented, the construction of the representation of the rotation group on this space, the deformation of the Leibnitz rule accompanying this representation and the implied necessity of deforming the co-product to restore the rotation symmetry automorphism. This also implies the breaking of rotational invariance on the level of the Schroedinger action and equation as well as the Hamiltonian, even for rotational invariant potentials. For rotational invariant potentials the symmetry breaking results purely from the deformation in the sense that the commutator of the Hamiltonian and angular momentum is proportional to the deformation.Comment: 21 page

    The N=1 Supersymmetric Landau Problem and its Supersymmetric Landau Level Projections: the N=1 Supersymmetric Moyal-Voros Superplane

    Get PDF
    The N=1 supersymmetric invariant Landau problem is constructed and solved. By considering Landau level projections remaining non trivial under N=1 supersymmetry transformations, the algebraic structures of the N=1 supersymmetric covariant non(anti)commutative superplane analogue of the ordinary N=0 noncommutative Moyal-Voros plane are identified

    Noncommutative quantum mechanics -- a perspective on structure and spatial extent

    Full text link
    We explore the notion of spatial extent and structure, already alluded to in earlier literature, within the formulation of quantum mechanics on the noncommutative plane. Introducing the notion of average position and its measurement, we find two equivalent pictures: a constrained local description in position containing additional degrees of freedom, and an unconstrained nonlocal description in terms of the position without any other degrees of freedom. Both these descriptions have a corresponding classical theory which shows that the concept of extended, structured objects emerges quite naturally and unavoidably there. It is explicitly demonstrated that the conserved energy and angular momentum contain corrections to those of a point particle. We argue that these notions also extend naturally to the quantum level. The local description is found to be the most convenient as it manifestly displays additional information about structure of quantum states that is more subtly encoded in the nonlocal, unconstrained description. Subsequently we use this picture to discuss the free particle and harmonic oscillator as examples.Comment: 25 pages, no figure

    Establishing the impact of powerful AGN on their host galaxies

    Full text link
    Establishing the role of active galactic nuclei (AGN) during the formation of galaxies remains one of the greatest challenges of galaxy formation theory. Towards addressing this, we summarise our recent work investigating: (1) the physical drivers of ionised outflows and (2) observational signatures of the impact by jets/outflows on star formation and molecular gas content in AGN host galaxies. We confirm a connection between radio emission and extreme ionised gas kinematics in AGN hosts. Emission-line selected AGN are significantly more likely to exhibit ionised outflows (as traced by the [O III] emission line) if the projected linear extent of the radio emission is confined within the spectroscopic aperture. Follow-up high resolution radio observations and integral field spectroscopy of 10 luminous Type 2 AGN reveal moderate power, young (or frustrated) jets interacting with the interstellar medium. We find that these sources live in highly star forming and gas rich galaxies. Additionally, by combining ALMA-derived dust maps with integral field spectroscopy for eight host galaxies of z~2 X-ray AGN, we show that H-alpha emission is an unreliable tracer of star formation. For the five targets with ionised outflows we find no dramatic in-situ shut down of the star formation. Across both of these studies we find that if these AGN do have a negative impact upon their host galaxies, it must be happening on small (unresolved) spatial scales and/or an observable galaxy-wide impact has yet to occur.Comment: Invited Contribution to IAU Symposium 359 (T. Storchi-Bergmann, R. Overzier, W. Forman & R. Riffel, eds.
    • …
    corecore