44 research outputs found

    AGO2: A New Argonaute Compromising Plant Virus Accumulation

    Get PDF
    Plant viruses use several strategies to transport their nucleic acid genomes throughout the plants. Regardless of the movement mechanism, a universal major block to uninterrupted viral trafficking is the induction of antiviral silencing that degrades viral RNA. To counteract this defense, viruses encode suppressors that block certain steps in the RNA silencing pathway, and consequently these proteins allow viral spread to proceed. There is a constant battle between plants and viruses and sometimes viruses will succeed and invade the plants and in other cases the RNA silencing mechanism will override the virus. A key role in the silencing versus suppression conflict between plants and viruses is played by one or more members of the Argonaute protein (AGO) family encoded by plants. Here we review the mechanisms and effects of antiviral silencing with an emphasis on the contribution of AGOs, especially the recently discovered role of AGO2

    Enhanced Transgene Expression in Sugarcane by Co-Expression of Virus-Encoded RNA Silencing Suppressors

    Get PDF
    Post-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the β-glucuronidase (GUS) reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young leaf segments and protoplasts. In young leaf segments co-expressing a suppressor, EYFP reached its maximum expression at 48-96 h post-DNA introduction and maintained its peak expression for a longer time compared with that in the absence of a suppressor. Among the five suppressors, Tomato bushy stunt virus-encoded P19 and Barley stripe mosaic virus-encoded γb were the most efficient. Co-expression with P19 and γb enhanced EYFP expression 4.6-fold and 3.6-fold in young leaf segments, and GUS activity 2.3-fold and 2.4-fold in protoplasts compared with those in the absence of a suppressor, respectively. In transgenic sugarcane, co-expression of GUS and P19 suppressor showed the highest accumulation of GUS levels with an average of 2.7-fold more than when GUS was expressed alone, with no detrimental phenotypic effects. The two established transient expression assays, based on young leaf segments and protoplasts, and confirmed by stable transgene expression, offer a rapid versatile system to verify the efficiency of RNA silencing suppressors that proved to be valuable in enhancing and stabilizing transgene expression in sugarcane

    Molecular and Physiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relation with Candidatus Liberibacter Contents in Psyllid Vectors

    Get PDF
    Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants

    Rapid Delivery of Foreign Genes into Plants by Direct Rub-Inoculation with Intact Plasmid DNA of a Tomato Bushy Stunt Virus Gene Vector

    Get PDF
    Tomato bushy stunt virus (TBSV) cDNA, positioned between a modified cauliflower mosaic virus 35S promoter and the hepatitis delta virus antigenomic ribozyme with a downstream nopaline synthase gene polyadenylation signal, established infections upon rub-inoculation of plants with intact plasmids. Application of this methodology produced a TBSV DNA-based gene vector which yielded readily detectable levels of localized foreign gene expression in inoculated leaves. This is the first demonstration of an infectious DNA from a member of the Tombusviridae which permits rapid TBSV-mediated foreign-gene expression upon direct rub-inoculation of miniprep DNA onto a variety of plant species

    Host-Dependent Recombination of a Tomato bushy stunt virus Coat Protein Mutant Yields Truncated Capsid Subunits That Form Virus-like Complexes Which Benefit Systemic Spread

    No full text
    This study examined the contribution of the Tomato bushy stunt virus (TBSV) coat protein (CP) and its corresponding RNA to systemic infection of plants. Compared to results obtained with a mutant lacking the 5′-half of the CP gene, the presence of those CP-RNA sequences in another mutant benefited TBSV infection on Nicotiana benthamiana even though wild-type CP expression was eliminated by introduction of a small out-of-frame deletion. RT-PCR of viral RNA associated with rapid infections established by this CP frameshift deletion mutant revealed that in planta recombination had provided the progeny with the ability to express a truncated CP (tCP) with a block of N-proximal 30 residues deleted from the 66 amino acid RNA-binding domain. Subsequent biochemical characterizations revealed the presence of large ribonucleoprotein complexes that were shown to contain viral RNA as well as the ∼38-kDa tCP. Electron microscopic examination of purified complexes showed particle-like structures that were nonuniform in size and shape compared to wild-type TBSV particles. Inoculation of pepper with the tCP-containing ribonucleoprotein complexes resulted in a rapid systemic infection similar to that caused by wild-type TBSV. In contrast, infections established in pepper by the original CP frameshift deletion mutant transcripts were restricted to inoculated leaves and did not yield recombinants capable of systemically infecting this host. In summary, TBSV possesses the flexibility to form alternative virion-like structures even if a substantial portion of the RNA-binding domain is deleted from the CP; mutants producing the tCP-containing particle-like structures are more effective for virus spread than those devoid of CP expression; and recombination events to produce the alternative tCP–RNA complexes are host-dependent.This work was funded by the Texas Agricultural Experiment Station (TEX08387) and grants from USDA/CSREES-NRI-CGP (99- 35303-8022), the Texas Higher Education Coordinating Board Advanced Technology Program (000517-0070-1999), and the S. R. Noble Foundation, Inc.Peer reviewe

    Effects of inactivation of the coat protein and movement genes of Tomato bushy stunt virus on early accumulation of genomic and subgenomic RNAs

    No full text
    Accumulation of RNA of Tomato bushy stunt virus (TBSV) was examined within the first few hours after infection of Nicotiana benthamiana protoplasts to determine the influence of the coat protein (CP), the movement-associated proteins P22 and P19 and RNA sequences at very early stages of replication. The results showed that P19 had no effect on early RNA replication, whereas the absence of CP and/or P22 expression delayed RNA accumulation only marginally. Removal of CP-coding sequences had no added negative effects, but when the deletion extended into the downstream p22 gene, it not only eliminated synthesis of subgenomic RNA2 but also delayed accumulation of genomic RNA by 10 h. At times beyond 20 h post-transfection, RNA accumulated to normal high levels for all mutants. This illustrates that TBSV RNA sequences that have negligible impact on overall RNA levels observed late in infection can actually have pronounced effects at very early stages
    corecore