68 research outputs found

    Efficacy and safety of “Yahom” as a traditional Thai herbal therapy: a systematic review

    Get PDF
    Yahom is a traditional Thai medicine used to treat syncope and abdominal discomfort.This study aimed to systematically review all available evidence which purports to support these claims.The systematic review accorded with the Cochrane Collaboration framework and PRISMA reporting. Databases including MEDLINE, Excerpta Medica Database (EMBASE), Cochrane library database, and Google Scholar were searched by keywords, Yahom and Ya-hom. Pharmacological and toxicity data from non-animal and animal studies were included.Twenty-four articles: 2 on in vitro cell lines or bacteria, 3 in vitro cell-free, 5 in vitro animal, 13 in vivo and 1 human mainly reported (A) Cardiovascular effects (i) transient hypotension (0.2-0.8g/kg, intravenous injection (i.v.)), increased cerebral blood flow (2g/kg, single oral) and vascular dilatation/relaxation (ii) elevated blood pressure (BP) (0.2-0.8g/kg, i.v. or 2-4g/kg oral) and vasocontraction. Single Yahom doses (3g) given to healthy volunteers had no effect on cutaneous blood flow, ECG or systolic BP although marginally increased diastolic BP was claimed. (B) Yahom (2-4g/kg) completely inhibited gastric acid secretion evoked by gastric secretagogues. (C) Toxicity: Chronic oral doses of selected Yahoms to rodents (0.001-1g/kg) supports its status as generally regarded as safe.Most studies supported declared objectives relating to perceived Yahom actions, but lacked background demonstrating clinical efficacy, and mechanistic data that would validate conclusions. Our study suggests that research into traditional medicinal herbs needs underpinning by appropriate clinical interventions and pharmacovigilance, thereby optimising efficacy and minimizing toxicity by combining traditional wisdom and modern testing

    Physiology and Pharmacology Feedback via Ca 2Ăľ -Activated Ion Channels Modulates Endothelin 1 Signaling in Retinal Arteriolar Smooth Muscle

    Get PDF
    PURPOSE. To investigate the role of feedback by Ca 2Ăľ -sensitive plasma-membrane ion channels in endothelin 1 (Et1) signaling in vitro and in vivo. METHODS. Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using two-dimensional (2-D) confocal laser microscopy. Vasoconstrictor responses to intravitreal injections of Et1 were recorded in the absence and presence of appropriate ion channel blockers using fluorescein angiograms imaged using a confocal scanning laser ophthalmoscope. RESULTS. Et1 (10 nM) increased both basal [Ca 2Ăľ ] i and the amplitude and frequency of Ca 2Ăľ -waves in retinal arterioles. The Ca 2Ăľ -activated Cl --channel blockers DIDS and 9-anthracene carboxylic acid (9AC) blocked Et1-induced increases in wave frequency, and 9AC also inhibited the increase in amplitude. Iberiotoxin, an inhibitor of large conductance (BK) Ca 2Ăľ -activated K Ăľ -channels, increased wave amplitude in the presence of Et1 but had no effect on frequency

    Bacopa monnieri extract increases rat coronary flow and protects against myocardial ischemia/reperfusion injury

    Get PDF
    Background: This study explored Bacopa monnieri, a medicinal Ayurvedic herb, as a cardioprotectant against ischemia/reperfusion injury using cardiac function and coronary flow as end-points. Methods: In normal isolated rat hearts, coronary flow, left ventricular developed pressure, heart rate, and functional recovery were measured using the Langendorff preparation. Hearts were perfused with either (i) Krebs-Henseleit (normal) solution, (control), or with 30, 100 μg/ml B. monnieri ethanolic extract (30 min), or (ii) with normal solution or extract for 10 min preceding no-perfusion ischemia (30 min) followed by reperfusion (30 min) with normal solution. Infarct volumes were measured by triphenyltetrazolium staining. L-type Ca2+-currents (ICa, L) were measured by whole-cell patching in HL-1 cells, a mouse atrial cardiomyocyte cell line. Cytotoxicity of B. monnieri was assessed in rat isolated ventricular myocytes by trypan blue exclusion. Results: In normally perfused hearts, B. monnieri increased coronary flow by 63 ± 13% (30 μg/ml) and 216 ± 21% (100 μg/ml), compared to control (5 ± 3%) (n = 8–10, p < 0.001). B. monnieri treatment preceding ischemia/reperfusion improved left ventricular developed pressure by 84 ± 10% (30 μg/ml), 82 ± 10% (100 μg/ml) and 52 ± 6% (control) compared to pre- ischemia/reperfusion. Similarly, functional recovery showed a sustained increase. Moreover, B. monnieri (100 μg/ml) reduced the percentage of infarct size from 51 ± 2% (control) to 25 ± 2% (n = 6-8, p < 0.0001). B. monnieri (100 μg/ml) reduced ICa, L by 63 ± 4% in HL-1 cells. Ventricular myocyte survival decreased at higher concentrations (50–1000 μg/ml) B. monnieri. Conclusions: B. monnieri improves myocardial function following ischemia/reperfusion injury through recovery of coronary blood flow, contractile force and decrease in infarct size. Thus this may lead to a novel cardioprotectant strategy

    Voltage- and cold-dependent gating of single TRPM8 ion channels

    Get PDF
    Transient receptor potential (TRP) channels play critical roles in cell signaling by coupling various environmental factors to changes in membrane potential that modulate calcium influx. TRP channels are typically activated in a polymodal manner, thus integrating multiple stimuli. Although much progress has been made, the underlying mechanisms of TRP channel activation are largely unknown. The TRPM8 cation channel has been extensively investigated as a major neuronal cold sensor but is also activated by voltage, calcium store depletion, and some lipids as well as by compounds that produce cooling sensations, such as menthol or icilin. Several models of TRPM8 activation have been proposed to explain the interaction between these diverse stimuli. However, a kinetic scheme is not yet available that can describe the detailed single-channel kinetics to gain further insight into the underlying gating mechanism. To work toward this goal, we investigated voltage-dependent single-channel gating in cell-attached patches at two different temperatures (20 and 30°C) using HEK293 cells stably expressing TRPM8. Both membrane depolarization and cooling increased channel open probability (Po) mainly by decreasing the duration of closed intervals, with a smaller increase in the duration of open intervals. Maximum likelihood analysis of dwell times at both temperatures indicated gating in a minimum of five closed and two open states, and global fitting over a wide range of voltages identified a seven-state model that described the voltage dependence of Po, the single-channel kinetics, and the response of whole-cell currents to voltage ramps and steps. The major action of depolarization and cooling was to accelerate forward transitions between the same two sets of adjacent closed states. The seven-state model provides a general mechanism to account for TRPM8 activation by membrane depolarization at two temperatures and can serve as a starting point for further investigations of multimodal TRP activation

    Fast Retinal Vessel Detection and Measurement Using Wavelets and Edge Location Refinement

    Get PDF
    The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available
    • …
    corecore